Thursday, November 24, 2011

New Magnetic-field-sensitive Alloy Could Find Use İn novel Micromechanical Devices

Led by a group at the University of Maryland (UMd), a multi-institution team of researchers has combined modern materials research and an age-old metallurgy technique to produce an alloy that could be the basis for a new class of sensors and micromechanical devices controlled by magnetism. The alloy, a combination of cobalt and iron, is notable, among other things, for not using rare-earth elements to achieve its properties. Materials scientists at the National Institute of Standards and Technology (NIST) contributed precision measurements of the alloy's structure and mechanical properties to the project. The alloy exhibits a phenomenon called "giant magnetostriction," an amplified change in dimensions when placed in a sufficiently strong magnetic field. The effect is analogous to the more familiar piezoelectric effect that causes certain materials, like quartz, to compress under an electric field. They can be used in a variety of ways, including as sensitive magnetic field detectors and tiny actuators for micromechanical devices. The latter is particularly interesting to engineers because, unlike piezoelectrics, magnetostrictive elements require no wires and can be controlled by an external magnetic field source.

To find the best mixture of metals and processing, the team used a combinatorial screening technique, fabricating hundreds of tiny test cantilevers -- tiny, 10-millimeter-long, silicon beams looking like diving boards -- and coating them with a thin film of alloy, gradually varying the ratio of cobalt to iron across the array of cantilevers. They also used two different heat treatments, including, critically, one in which the alloy was heated to an annealing temperature and then suddenly quenched in water.

Quenching is a classic metallurgy technique to freeze a material's microstructure in a state that it normally only has when heated. In this case, measurements at NIST and the Stanford Synchrotron Radiation Lightsource (SSRL) showed that the best-performing alloy had a delicate hetereogenous, nanoscale structure in which cobalt-rich crystals were embedded throughout a different, iron-rich crystal structure. Magnetostriction was determined by measuring the amount by which the alloy bent the tiny silicon cantilever in a magnetic field, combined with delicate measurements at NIST to determine the stiffness of the cantilever.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP