E.Coli Bacteria Engineered To Eat Switchgrass and Make Transportation Fuels
A milestone has been reached on the road to developing advanced biofuels that can replace gasoline, diesel and jet fuels with a domestically-produced clean, green, renewable alternative. Researchers with the U.S. Department of Energy (DOE)'s Joint BioEnergy Institute (JBEI) have engineered the first strains of Escherichia colibacteria that can digest switchgrass biomass and synthesize its sugars into all three of those transportation fuels. What's more, the microbes are able to do this without any help from enzyme additives.
"This work shows that we can reduce one of the most expensive parts of the biofuel production process, the addition of enzymes to depolymerize cellulose and hemicellulose into fermentable sugars," says Jay Keasling, CEO of JBEI and leader of this research. "This will enable us to reduce fuel production costs by consolidating two steps -- depolymerizing cellulose and hemicellulose into sugars, and fermenting the sugars into fuels -- into a single step or one pot operation."
Keasling, who also holds appointments with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkley, is the corresponding author of a paper in the Proceedings of the National Academy of Sciences (PNAS) that describes this work. The paper is titled "Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli."
Advanced biofuels made from the lignocellulosic biomass of non-food crops and agricultural waste are widely believed to represent the best source of renewable liquid transportation fuels. Unlike ethanol, which in this country is produced from corn starch, these advanced biofuels can replace gasoline on a gallon-for-gallon basis, and they can be used in today's engines and infrastructures. The biggest roadblock to an advanced biofuels highway is bringing the cost of producing these fuels down so that they are economically competitive.