Monday, April 25, 2011

Rainwater Harvesting Study

Faculty and students with The Cockrell School of Engineering recently completed a study that is being used by the Texas Water Development Board to give residents a better sense of what roofing materials are best for harvesting rainwater. Pictured left to right are: Professors Kerry Kinney and Michael Barrett (back row); engineering student Carolina Mendez; and Assistant Professor Mary Jo Kirisits.
For the past few years, one of the most common questions facing the Texas Water Development Board (TWDB) hasn’t been over contentious water rights or proposed water projects; it’s been from homeowners wanting to know what type of roofing material is most suitable for collecting rainwater for indoor domestic use.

“Rainwater harvesting is becoming fairly widespread, at least in Central Texas. There’s interest born out of necessity because people are simply running out of water in rural areas or they’re interested in conserving water supplies and it’s good for the environment,” said Dr. Sanjeev Kalaswad, the TWDB’s rainwater harvesting coordinator.

But when it came to responding to residents’ questions about which roof collection surfaces are best suited for rainwater harvesting, TWDB didn’t have a good, science-based answer to give, Kalaswad said. That’s when the Cockrell School of Engineering came in to help.

With funding from TWDB, Cockrell School faculty and students conducted an in-depth study - recently published in the academic journal Water Research - examining the effects of conventional and alternative roofing materials on the quality of harvested rainwater. The study, led by civil, architectural and environmental engineering Assistant Professor Mary Jo Kirisits, showed that, of the five roofing materials tested, metal (specifically Galvalume®), concrete tile and cool roofs produce the highest harvested rainwater quality for indoor domestic use. The study also showed that rainwater from asphalt fiberglass shingle roofs and increasingly popular “green” roofs contain high levels of dissolved organic carbon (DOC). Although other potential pollutants can be significantly lower on green roofs (turbidity and aluminum), the high DOCs are significant where these roofs would be used for potable rainwater collection.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP