Saturday, September 17, 2011

Data Miners Dig For Corrosion Resistance

A better understanding of corrosion resistance may be possible using a data-mining tool, according to Penn State material scientists. This tool may also aid research in other areas where massive amounts of information exist. In data mining -- a branch of computer science -- computer programs categorize large amounts of data so they become more useful. Different types of data-mining programs can find correlations between data on specific subjects, or in different areas of a single subject. Data mining finds similarities and differences among data parameters that frequently, in a complex problem, would go unnoticed because they would not normally be observed by human inspection.

Kamrun Nahar, research associate, Center for Neural Engineering, along with Mirna Urquidi-Macdonald, professor of engineering science and mechanics, used data mining to find the most relevant information about the corrosion-resistant properties of Alloy 22, an alloy candidate for nuclear-waste canisters. They reported their findings in the latest issue of Corrosion Science.

"Data is collected when a phenomenon is poorly understood and laboratory experiments are carried out," said Nahar. "Large amounts of data exist everywhere. Every area of study has terabytes of information that could be used better by using data mining techniques to extract valuable information from data."

Alloy 22 is known for its corrosion-resistant properties and is most commonly used where resistance to rust and damage is crucial, such as in radioactive waste containment. Alloy 22 also is used in waste incinerators, pollution control, nuclear-fuel reprocessing and chemical manufacturing.

Alloys are mixtures of metals combined for their specific traits. An alloy usually has different properties than its components and is engineered to produce a material with the desired properties.

"We looked at corrosion properties," said Nahar. "What are the factors, what are the problems with corrosion, and what can we focus on? If you use this alloy for different applications, what are the effects in a certain time period? In how many years will you see corrosion and will it not fade?"

The alloy data came from other researchers' work on Alloy 22. Nahar and Urquidi-Macdonald used statistical techniques to clean the data and put it into a unified format. The data was fed into the computational model the researchers developed for this project. They used an artificial neural network -- ANN, one type of data-mining system that works similarly to a human brain, asking questions, answering them, finding patterns and learning from previous conclusions.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP