Genius Of Einstein, Fourier Key To New Humanlike Computer Vision
Two new techniques for computer-vision technology mimic how humans perceive three-dimensional shapes by instantly recognizing objects no matter how they are twisted or bent, an advance that could help machines see more like people. The techniques, called heat mapping and heat distribution, apply mathematical methods to enable machines to perceive three-dimensional objects, said Karthik Ramani, Purdue University's Donald W. Feddersen Professor of Mechanical Engineering.
"Humans can easily perceive 3-D shapes, but it's not so easy for a computer," he said. "We can easily separate an object like a hand into its segments - the palm and five fingers - a difficult operation for computers."
Both of the techniques build on the basic physics and mathematical equations related to how heat diffuses over surfaces.
"Albert Einstein made contributions to diffusion, and 18th century physicist Jean Baptiste Joseph Fourier developed Fourier's law, used to derive the heat equation," Ramani said. "We are standing on the shoulders of giants in creating the algorithms for these new approaches using the heat equation."
As heat diffuses over a surface it follows and captures the precise contours of a shape. The system takes advantage of this "intelligence of heat," simulating heat flowing from one point to another and in the process characterizing the shape of an object, he said.
Findings will be detailed in two papers being presented during the IEEE Computer Vision and Pattern Recognition conference on June 21-23 in Colorado Springs. The paper was written by Ramani, Purdue doctoral students Yi Fang and Mengtian Sun, and Minhyong Kim, a professor of pure mathematics at the University College London.
A major limitation of existing methods is that they require "prior information" about a shape in order for it to be analyzed.
"For example, in order to do segmentation you have to tell the computer ahead of time how many segments the object has," Ramani said. "You have to tell it that you are expecting, say, 10 segments or 12 segments."
The new methods mimic the human ability to properly perceive objects because they don't require a preconceived idea of how many segments exist.
0 comments:
Post a Comment