University Of Houston Develops Method For Creating Single-crystal Arrays Of Graphene
University of Houston researchers have developed a method for creating single-crystal arrays of the material graphene, an advance that opens the possibility of a replacement for silicon in high-performance computers and electronics. The work by UH researchers and their collaborators is featured on the cover of the June issue of Nature Materials. Graphene is a one-atom-thick layer of carbon that was first fabricated in 2004. Single-crystal arrays of the material could be used to create a new class of high-speed transistors and integrated circuits that use less energy than silicon electronics because graphene conducts electricity with little resistance or heat generation.
But the industry needs a reliable and defect-free method for manufacturing large quantities of single crystals of graphene. The development reported in Nature Materials marks a step towards perfecting such a method.
"Using these seeds, we can grow an ordered array of thousands or millions of single crystals of graphene," said Qingkai Yu, the paper's first author. Yu developed the single-crystal growth process at the UH Center for Advanced Materials (CAM), where he was a research assistant professor of electrical and computer engineering.
"We hope the industry will look at these findings and consider the ordered arrays as a possible means of fabricating electronic devices," said Yu, who is now an assistant professor at Texas State University in San Marcos and remains a project leader at CAM.
Yu and Steven Pei, UH professor of electrical and computer engineering and CAM's deputy director, invented the graphene seeded-growth technique that UH patented in 2010.
"There is still a long way to go. However, this development makes the fabrication of integrated circuits with graphene transistors possible. This may actually be the first viable integrated circuit technology based on nano-electronics," Pei said.
Yong P. Chen, an assistant professor of nanoscience and physics at Purdue University, was the paper's co-corresponding author.
At CAM, single-crystal graphene arrays were grown on top of a copper foil inside a chamber containing methane gas using a process called chemical vapor deposition. This process was pioneered by Yu at CAM in 2008 and is now widely accepted as the standard method to create large-area graphene films for potential applications in touch-screen displays, e-books and solar cells.
"Graphene isn't there yet, in terms of high quality mass production like silicon, but this is a very important step in that direction," said Chen, who led the graphene characterization efforts at Purdue.
0 comments:
Post a Comment