Tuesday, September 6, 2011

The Brittleness Of Aging Bones More Than A Loss Of Bone Mass

It is a well-established fact that as we grow older, our bones become more brittle and prone to fracturing. It is also well established that loss of mass is a major reason for older bones fracturing more readily than younger bones, hence medical treatments have focused on slowing down this loss. However, new research from scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) shows that at microscopic dimensions, the age-related loss of bone quality can be every bit as important as the loss of quantity in the susceptibility of bone to fracturing. Using a combination of x-ray and electron based analytical techniques as well as macroscopic fracture testing, the researchers showed that the advancement of age ushers in a degradation of the mechanical properties of human cortical bone over a range of different size scales. As a result, the bone's ability to resist fracture becomes increasingly compromised. This age-related loss of bone quality is independent of age-related bone mass loss.

"In characterizing age-related structural changes in human cortical bone at the micrometer and sub micrometer scales, we found that these changes degrade both the intrinsic and extrinsic toughness of bone," says Berkeley Lab materials scientist Robert Ritchie. "Based on multiscale structural and mechanical tests, we attribute this degradation to a hierarchical series of coupled mechanisms that start at the molecular level."

Ritchie, who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley's Materials Science and Engineering Department, is the senior author of a paper published in the Proceedings of the National Academy of Science (PNAS) that describes this work. The paper is titled "Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales."

Co-authoring the PNAS paper with Ritchie were Elizabeth Zimmermann, Eric Schaible, Hrishikesh Bale, Holly Barth, Simon Tang, Peter Reichert, Björn Busse, Tamara Alliston and Joel Ager.

Human cortical or compact bone is a composite of collagen molecules and nanocrystals of a mineralized form of calcium called hydroxyapatite (HA). Mechanical properties of stiffness, strength and toughness arise from both the characteristic structure at the nanoscale, and at multiple length scales through the hierarchical architecture of the bone. These length scales extend from the molecular level to the osteonal structures at near-millimeter levels. An osteon is the basic structural unit of compact bone, composed of a central canal surrounded by concentric rings of lamellae plates, through which bone remodels.

"Mechanisms that strengthen and toughen bone can be identified at most of these structural length scales and can be usefully classified, as in many materials, in terms of intrinsic toughening mechanisms at small length scales, promoting non-brittle behavior, and extrinsic toughening mechanisms at larger length scales acting to limit the growth of cracks," Ritchie says. "These features are present in healthy, young human bone and are responsible for its unique mechanical properties. However, with biological aging, the ability of these mechanisms to resist fracture deteriorates leading to a reduction in bone strength and fracture toughness."

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP