Bats Lend An Ear To Sonar Engineering
Researchers have mapped out the diversity of bat ears in a hope to inspire the design of new intuitive methods of manipulating waves with physical shapes, such as SONAR and RADAR. Published today, Tuesday, 10 May, in IOP Publishing's journal Bioinspiration & Biomimetics, the study provides key insights into the variability of the shapes of bat ears that exists between different species, and shows how this variability may affect the functionality of one of the most impressive navigational systems in nature.
Bats are one of a few animal groups that demonstrate biosonar—the ability to generate and emit ultrasonic pulses and gauge the reflections to obtain detailed information on their surroundings.
Bats use biosonar as a way of navigating and hunting for food, however researchers have seen its potential to inspire new ways of engineering where manipulating outgoing or incoming waves with structures is a principal component.
Lead author Professor Rolf Müller, of Virginia Tech, said: "Using physical shapes to manipulate an outgoing or a received wave has application in many areas of engineering. Besides the obvious analogues of SONAR and RADAR, such principles could also find application in biomedical ultrasound, non-destructive testing, wireless communications, and sensory systems for autonomous robots and nodes in sensor networks."
The ear of a bat plays a crucial role in the overall sensing system by acting as a baffle to diffract the incoming waves therefore determining the ear's pattern of sensitivity to direction and frequency.
The researchers, working in a joint research laboratory of Shandong University and Virginia Tech, created 3D computer models of 100 bat pinnae—the visible part of the ear that resides outside of the head—from 59 different species, and transformed the models into cylindrical representations.
The representations were statistically analysed using principal component analysis—a method that has previously been applied to analyse human faces, palms, and ears —and were shown to vary in the opening angle of the pinna, breaks of symmetry between the right and left sides, and changes in width at both the top and bottom.
The researchers also demonstrated how this variability can affect the properties of beamforming—the process by which the incoming signal is diffracted by the shape of the pinna to create a "beampattern" through which the bat sees it environment.
0 comments:
Post a Comment