Chemistry With Sunlight: Combining Electrochemistry and Photovoltaics to Clean Up Oxidation Reactions
The idea is simple, says Kevin Moeller, PhD, and yet it has huge implications. All we are recommending is using photovoltaic cells (clean energy) to power electrochemical reactions (clean chemistry). Moeller is the first to admit this isn't new science.
"But we hope to change the way people do this kind of chemistry by making a connection for them between two existing technologies," he says.
To underscore the simplicity of the idea, Moeller and his co-authors used a $6 solar cell sold on the Internet and intended to power toy cars to run reactions described in an article published in Green Chemistry.
If their suggestion were widely adopted by the chemical industry, it would eliminate the toxic byproducts currently produced by a class of reactions commonly used in chemical synthesis -- and with them the environmental and economic damage they cause.
The trouble with oxidation reactions
Moeller, a professor of chemistry in Arts & Sciences at Washington University in St. Louis, is an organic chemist, who makes and manipulates molecules made mainly of carbon, hydrogen, oxygen and nitrogen.
One important tool for synthesizing organic molecules -- an enormous category that includes everything from anesthetics to yarn -- is the oxidation reaction.
"They are the one tool we have that allows us to increase the functionality of a molecule, to add more "handles" to it by which it can be manipulated," says Moeller.
"Molecules interact with each other through combinations of atoms known as functional groups," he explains. "Ketones, alcohols or amines are all functional groups. The more functional groups you have on a molecule, the more you can control how the molecule interacts with others."
"Oxidation reactions attach functional groups to a molecule," he continues. "If I have a hydrocarbon that consists of nothing but carbon and hydrogen atoms bonded together, and I want to convert it to an alcohol, a ketone or an amine, I have to oxidize it."
In an oxidation reaction, an electron is removed from a molecule. But that electron has to go somewhere, so every oxidation reaction is paired with a reduction reaction, where an electron is added to a second molecule.
The problem, says Moeller, is that "that second molecule is a waste product; it's not something you want."
One example, he says, is an industrial alcohol oxidation that uses the oxidant chromium to convert an alcohol into a ketone. In the process the chromium, originally chromium VI, picks up electrons and becomes chromium IV. Chromium IV is the waste product of the oxidation reaction.
In this case, there is a partial solution. Sodium periodate is used to recycle the highly toxic chromium IV. A salt, the sodium periodate dissociates in solution and the periodate ion (an iodine atom with attached oxygens) interacts with the chromium, restoring it to its original oxidation state.
The catch is that restoring the chromium destroys the periodate. In addition, the process is inefficient; three equivalents of periodate is consumed for every equivalent of desired product produced.
0 comments:
Post a Comment