Scientists Hope To Get Glimpse Of Adolescent Universe From Revolutionary İnstrument-On-a-chip
Scientists know what the universe looked like when it was a baby. They know what it looks like today. What they don't know is how it looked in its youth. Thanks to technological advances, however, scientists hope to complete the photo album and provide a picture of how the cosmos developed into the kind of place that could support life like that found on Earth. They plan to gather these never-before-obtained insights with a potentially "game-changing" instrument that is expected to be 10,000 times more sensitive than the current state-of-the-art.
The instrument is being designed to gather data of objects so distant from Earth that they no longer can be observed in visible light, only in the infrared bands of the electromagnetic spectrum. In particular, this instrument, called a spectrometer, will measure the properties of the infrared light to identify the object's composition and other physical properties.
Just as impressive, the aptly named MicroSpec would be able to perform these highly sensitive observations from a very small platform -- so small, in fact, that all its components would fit onto a silicon wafer measuring just four inches in diameter.
Now under development by engineers and scientists at the Goddard Space Flight Center in Greenbelt, Md., the instrument is a strong contender for future flight missions in astrophysics and Earth science, said astrophysicist Harvey Moseley, who is leading the instrument-development effort. "It's quite a new and, we think, revolutionary concept," he said. "If we can prove it, everyone will want it."
Stars to Hemoglobin
Although the technology could help answer a plethora of science questions, it is ideally suited for studying the evolution of the universe and by extension, humanity's place in it.
Past NASA missions, including the Goddard-developed Cosmic Background Explorer and the Wilkinson Microwave Anistropy Probe, studied the infant universe. They gathered information about the primordial light created during the universe's creation. Both detected tiny temperature differences, which pointed to density differences that ultimately gave rise to the first stars and galaxies formed 400,000 million years after the Big Bang.
However, scientists have yet to study these objects with great precision. They also have not studied light emitted by the life-sustaining elements created in these first stars and later distributed across the universe in stellar explosions.
"Right after the Big Bang, the only elements that were really present in any abundance were hydrogen and helium," Moseley said. "The formation of stars and the nuclear reaction that took place inside these first stars have created essentially all the elements that constitute the things that we see around here -- the carbon in our bodies and the iron and hemoglobin in our blood. All these elements were formed in the many generations of stars that have been born and have died since the Big Bang."
By building an instrument like MicroSpec, and studying this specific era in the universe's nearly 14-billion-year history, scientists will "get a very clear picture of how the universe developed into the kind of place that could support life like us," Moseley added.
Unprecedented Instrument
Not only is the science unprecedented, so is the instrument, said Wen-Ting Hsieh, a Goddard Detector Development Laboratory engineer who has been working with Moseley since 2009 to advance the technology in preparation for a future mission. "The most important thing is it is small and it's super-sensitive."
0 comments:
Post a Comment