Saturday, June 18, 2011

Restoring Memory, Repairing Damaged Brains

Scientists have developed a way to turn memories on and off—literally with the flip of a switch. Using an electronic system that duplicates the neural signals associated with memory, they managed to replicate the brain function in rats associated with long-term learned behavior, even when the rats had been drugged to forget.

"Flip the switch on, and the rats remember. Flip it off, and the rats forget," said Theodore Berger of the USC Viterbi School of Engineering's Department of Biomedical Engineering.

Berger is the lead author of an article that will be published in the Journal of Neural Engineering. His team worked with scientists from Wake Forest University in the study, building on recent advances in our understanding of the brain area known as the hippocampus and its role in learning.

In the experiment, the researchers had rats learn a task, pressing one lever rather than another to receive a reward. Using embedded electrical probes, the experimental research team, led by Sam A. Deadwyler of the Wake Forest Department of Physiology and Pharmacology, recorded changes in the rat's brain activity between the two major internal divisions of the hippocampus, known as subregions CA3 and CA1. During the learning process, the hippocampus converts short-term memory into long-term memory, the researchers prior work has shown.

"No hippocampus," says Berger, "no long-term memory, but still short-term memory." CA3 and CA1 interact to create long-term memory, prior research has shown.

In a dramatic demonstration, the experimenters blocked the normal neural interactions between the two areas using pharmacological agents. The previously trained rats then no longer displayed the long-term learned behavior.

"The rats still showed that they knew 'when you press left first, then press right next time, and vice-versa,'" Berger said. "And they still knew in general to press levers for water, but they could only remember whether they had pressed left or right for 5-10 seconds."

Using a model created by the prosthetics research team led by Berger, the teams then went further and developed an artificial hippocampal system that could duplicate the pattern of interaction between CA3-CA1 interactions.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP