Researchers Engineer Functioning Small İntestine İn Laboratory Experiments
Researchers at The Saban Research Institute of Children's Hospital Los Angeles have successfully created a tissue-engineered small intestine in mice that replicates the intestinal structures of natural intestine—a necessary first step toward someday applying this regenerative medicine technique to humans. The study led by Tracy C. Grikscheit, MD —"A Multicellular Approach Forms a Significant Amount of Tissue-Engineered Small Intestine in the Mouse"— has been published in the July issue of Tissue Engineering Part A, a premier biomedical journal.
"In this paper, we are able to report that we can grow tissue-engineered intestine in a mouse model, which opens the doors of basic biology to understand how to grow this tissue better," said Dr. Grikscheit, who is also an assistant professor of surgery at the Keck School of Medicine of the University of Southern California.
As a pediatric surgeon, Dr. Grikscheit is concerned with finding solutions for some of her more vulnerable patients—newborns. Infants born prematurely are at increased risk for a gastrointestinal disease called necrotizing enterocolitis (NEC), which occurs when the intestine is injured. The cause is unknown.
Early treatment of NEC is essential to stop the potentially life-threatening leakage of bacteria into the abdomen. Often, the only solution is surgical removal of the small intestine. However, this option leaves the baby dependent on intravenous feeding and at risk for liver damage from subsequent intravenous nutrition. Organ transplants are possible but not a long-term solution, with only a 50 percent chance the grafted intestine will last past the child's 5th birthday.
Dr. Grikscheit, a member of The Saban Research Institute's Developmental Biology and Regenerative Medicine program, envisions a better solution. "The small intestine is an exquisitely regenerative organ. The cells are constantly being lost and replaced over the course of our entire lives," she explained. "Why not harness that regenerative capacity to benefit these children?"
Working in the laboratory, the research team took samples of intestinal tissue from mice. This tissue was comprised of the layers of the various cells that make up the intestine — including muscle cells and the cells that line the inside, known as epithelial cells. The investigators then transplanted that mixture of cells within the abdomen on biodegradable polymers or "scaffolding."
0 comments:
Post a Comment