To Diagnose Heart Disease, Visualization Experts Recommend A Simpler Approach
A team of computer scientists, physicists, and physicians at Harvard have developed a simple yet powerful method of visualizing human arteries that may result in more accurate diagnoses of atherosclerosis and heart disease. The prototype tool, called "HemoVis," creates a 2D diagram of arteries that performs better than the traditional 3D, rainbow-colored model. In a clinical setting, the tool has been shown to increase diagnostic accuracy from 39% to 91%.
Presented October 27 at the IEEE Information Visualization Conference(InfoVis 2011), the new visualization methodoffers insight to clinicians, imaging specialists, engineers, and others in a wide range of fields who need to explore and evaluate complex, branching structures.
"Our goal was to design a visual representation of the data that was as accurate and efficient for patient diagnosis as possible," says lead author Michelle Borkin, a doctoral candidate at the Harvard School of Engineering and Applied Sciences (SEAS). "What we found is that the prettiest, most popular visualization is not always the most effective."
HemoVis takes data from patient-specific blood flow simulations, combined with traditional imaging data, and visually displays a tree diagram of the arteries with areas of disease highlighted to assist in diagnosis.
Tools for artery visualization in both clinical and research settings commonly use 3D models that portray the shape and spatial arrangement of vessels of interest. These complex tools require users to rotate the models to get a complete perspective of spatial orientation.
0 comments:
Post a Comment