Could a Computer One Day Rewire Itself? New Nanomaterial 'Steers' Electric Currents in Multiple Dimensions
As electronic devices are built smaller and smaller, the materials from which the circuits are constructed begin to lose their properties and begin to be controlled by quantum mechanical phenomena. Reaching this physical barrier, many scientists have begun building circuits into multiple dimensions, such as stacking components on top of one another.
The Northwestern team has taken a fundamentally different approach. They have made reconfigurable electronic materials: materials that can rearrange themselves to meet different computational needs at different times.
"Our new steering technology allows use to direct current flow through a piece of continuous material," said Bartosz A. Grzybowski, who led the research. "Like redirecting a river, streams of electrons can be steered in multiple directions through a block of the material -- even multiple streams flowing in opposing directions at the same time."
Grzybowski is professor of chemical and biological engineering in the McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences.
The Northwestern material combines different aspects of silicon- and polymer-based electronics to create a new classification of electronic materials: nanoparticle-based electronics.
The study, in which the authors report making preliminary electronic components with the hybrid material, will be published online Oct. 16 by the journal Nature Nanotechnology. The research also will be published as the cover story in the November print issue of the journal.
0 comments:
Post a Comment