Wednesday, October 5, 2011

Notre Dame Research Reveals Brain Network Connections

Ravasz and Zoltan Toroczkai of the University of Notre Dame's Interdisciplinary Center for Network Science and Applications (iCeNSA), along with the Department of Physics and a group of neuroanatomists in France, has revealed previously unknown information about the primate brain. The researchers published an article in the journal Cerebral Cortex showing that the brain is characterized by a highly consistent, weighted network among the functional areas of the cortex, which are responsible for such functions as vision, hearing, touch, movement control and complex associations. The study revealed that such cortical networks and their properties are reproducible from individual to individual.

Ercsey-Ravasz, a postdoctoral associate, and Toroczkai, professor of physics, analyzed 70 man-years' worth of data on macaque brains collected by a large group led by Henry Kennedy in Lyon, France. The Kennedy team injected ink tracers into a portion of the brain and scanned thin brain slices to track the movement of the chemical through the nerve cells' branches, called axons, to the soma of the cells. Kennedy enlisted iCeNSA for its expertise at analyzing networks, which has also been applied to fields as diverse as the spread of disease and the social networks. Their analysis identified the consistency of connectivity among the areas of the brain.

Ercsey-Ravasz, in a study of the data that will be included in a later paper, also has demonstrated that the number of connections is greatest between areas that are closest, and the number declines in a consistent pattern as distance increases. The regularity of the patterns from animal to animal suggests that the connections are necessary, and the fewer long-distance connections likely are control switches that coordinate or modulate information exchange amongst the brain areas.

The study is part of a broader investigation of brain function and intelligence that has accelerated in recent years as researchers abandoned the once-promising analogy between computer circuitry and human intelligence, a project that stalled in the 1970s. "It turns out the brain is not just this beautiful circuitry you could just back-engineer," Toroczkai says. "It is an amazingly complex system, and this is why it is very hard to understand why it works."

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP