Fast Prediction Of Axon Behavior
Researchers at Case Western Reserve University have developed a computer modeling method to accurately predict how a peripheral nerve axon responds to electrical stimuli, slashing the complex work from an inhibitory weeks-long process to just a few seconds. The method, which enables efficient evaluation of a nerve's response to millions of electrode designs, is an integral step toward building more accurate and capable electrodes to stimulate nerves and thereby enable people with paralysis or amputated limbs better control of movement.
To increase the accuracy of the results, the researchers included a key parameter overlooked in past mathematical approaches that were equally fast, but inaccurate. With the new techniques, electrode design can be optimized using advanced algorithms based on natural genetics.
An explanation of the work, which the team hopes others in the field will freely use, and a second method that was simpler and faster but proved less effective, are now available online in the Journal of Neural Engineering.
"We believe this will allow the next generation of computer-aided development of electrodes," said Dustin Tyler, associate professor of biomedical engineering at Case School of Engineering and senior author of the paper.
Since his graduate school days, Tyler has been developing electrodes to stimulate nerves in paralyzed patients and amputees. Taking the large step from animal models to human clinical trials can be improved with better computer modeling, he said.
"Finding the optimal way to stimulate a nerve is kind of like the 'travelling salesman' trying to figure out which is the most efficient route through a group of cities," Tyler said.
0 comments:
Post a Comment