Sunday, August 28, 2011

Laser Sparks Revolution İn İnternal Combustion Engines

For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles. In the past, lasers strong enough to ignite an engine's air-fuel mixtures were too large to fit under an automobile's hood. At this year's Conference on Lasers and Electro Optics (CLEO: 2011), to be held in Baltimore May 1 - 6, researchers from Japan will describe the first multibeam laser system small enough to screw into an engine's cylinder head.

Equally significant, the new laser system is made from ceramics, and could be produced inexpensively in large volumes, according to one of the presentation's authors, Takunori Taira of Japan's National Institutes of Natural Sciences.

According to Taira, conventional spark plugs pose a barrier to improving fuel economy and reducing emissions of nitrogen oxides (NOx), a key component of smog.

Spark plugs work by sending small, high-voltage electrical sparks across a gap between two metal electrodes. The spark ignites the air-fuel mixture in the engine's cylinder—producing a controlled explosion that forces the piston down to the bottom of the cylinder, generating the horsepower needed to move the vehicle.

Engines make NOx as a byproduct of combustion. If engines ran leaner – burnt more air and less fuel – they would produce significantly smaller NOx emissions.

Spark plugs can ignite leaner fuel mixtures, but only by increasing spark energy. Unfortunately, these high voltages erode spark plug electrodes so fast, the solution is not economical. By contrast, lasers, which ignite the air-fuel mixture with concentrated optical energy, have no electrodes and are not affected.

Lasers also improve efficiency. Conventional spark plugs sit on top of the cylinder and only ignite the air-fuel mixture close to them. The relatively cold metal of nearby electrodes and cylinder walls absorbs heat from the explosion, quenching the flame front just as it starts to expand.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP