Monday, August 22, 2011

Brain Scientists Offer Medical Educators Tips On The Neurobiology Of Learning

Everyone would like MDs to have the best education – and to absorb what they are taught. The lead article in the April 4 issue of the journal Academic Medicine* connects research on how the brain learns to how to incorporate this understanding into real world education, particularly the education of doctors. "Repetition, reward, and visualization are tried and true teaching strategies. Now, knowing what is happening in the brain will enhance teaching and learning," said Michael J. Friedlander, executive director of the Virginia Tech Carilion Research Institute (www.vtc.vt.edu/research/index.html) and professor of biological sciences and of biomedical engineering and science at Virginia Tech. He is the lead author on the article, "What can medical education learn from the neurobiology of learning?"

Friedlander collaborated on the article with Dr. Linda Andrews, senior associate dean for medical education, Baylor College of Medicine; Elizabeth G. Armstrong, director of Harvard Macy Institute, Harvard Medical School; Dr. Carol Aschenbrenner, executive vice president of the Association of American Medical Colleges; Dr. Joseph S. Kass, chief of neurology and director of the Stroke Center at Ben Taub Hospital and assistant professor of neurology, Center for Ethics and Health Policy, Baylor College of Medicine; Dr. Paul Ogden, associate dean for educational program development, Texas A&M Health Sciences Center and College of Medicine; Dr. Richard Schwartzstein, director of the Harvard Medical School Academy; and Dr. Tom Viggiano, the associate dean for faculty affairs, professor of medical education and medicine, and the Barbara Woodward Lips professor at Mayo Medical School.

The research

In the past 50 years, behavioral approaches combined with functional brain imaging and computational neuroscience have revealed strategies employed by mammals' brains to acquire, store, and retrieve information. In addition to molecular and cellular approaches to describe the workings of the underlying hardware changes that occur in the brain during learning and the formation of memories, there has also been progress in higher-order, human-based studies of cognition, including learning and memory. Scientists have used functional magnetic resonance imaging (fMRI) of the living brain combined with computational modeling to elucidate the strategies employed and the underlying biological processes.

The research has shown how learning leads to functional and structural changes in the cellular networks including the chemical communication points or synapses between neurons at a variety of sites throughout the central nervous system. The functional changes in the effectiveness of communication between individual neurons and within networks of neurons are accompanied by substantial changes in the structural circuitry of the brain, once thought to be hard-wired in adults.

"One of the most exciting advances, as a result of optical imaging of the living brain, is the demonstration that there is growth, retraction, and modifying connectivity between neurons," said Friedlander. "We have also seen that the mature brain can generate new neurons, although, this research is so new that the functional implications of these new neurons and their potential contribution to learning and memory formation remain to be determined," he said.

The recommendations

The most effective delivery of the best possible care requires identifying and assigning levels of importance to the biological components of learning. Here are 10 key aspects of learning based on decades of research by many scientists that the article's authors believe can be incorporated into effective teaching.

Repetition: Medical curricula often employ compressed coverage over limited time frames of a great amount of material. Learning theory and the neurobiology of learning and memory suggest that going deeper is more likely to result in better retention and depth of understanding. With repetition, many components of the neural processes become more efficient, requiring less energy and leaving higher-order pathways available for additional cognitive processing. However, repetitions must be appropriately spaced.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP