Thursday, June 30, 2011

New Molecular İmaging Agent Targets Cornerstone Of Cancerous Tumors

A study introduced at SNM's 58th Annual Meeting may lead to the next wave of cancer imaging by helping to develop a molecular imaging agent that detects many malignant cancers' incessant development of blood vessels—a process called angiogenesis. A protein biomarker known as CD105 has been shown to indicate tumor angiogenesis in cancer patients. "Non-invasive molecular imaging is a critical component of 21st century personalized medicine, and one of the hallmarks of cancer is angiogenesis," says Weibo Cai, PhD, assistant professor of radiology, medical physics and biomedical engineering at the University of Wisconsin–Madison's School of Medicine and Public Health. "CD105 is considered by many to be the best biomarker for evaluating tumor angiogenesis. Non-invasive imaging of this protein's expression could potentially play a variety of roles in the future of cancer patient management. CD105-targeted imaging agents also represent a new paradigm for the assessment of cancer therapies that target tumor angiogenesis. Applications for this agent could reach far beyond cancer and open many new avenues for future research."

Malignant cancers are defined by their ability to grow like weeds, forming fast and strong networks of blood vessels that carry oxygen and nutrients to the cancer's insatiable cellular structure. Endoglin, or CD105, is a naturally occurring protein that resides on the cell's surface. Above-normal expression of this protein is associated with poor cancer prognosis in more than 10 solid tumor types. The clinical standard for evaluating tumor angiogenesis is microvessel density (MVD) analysis, which is conducted by staining CD105 in tumor tissues that have been obtained by either surgical removal or biopsy. This study represents the first of its kind to report preliminary data on the non-invasive imaging of CD105 expression with positron emission tomography (PET), which provides a reliable measure of angiogenesis in the tumor.

Researchers used the medical isotope Copper-64 (64Cu) to label an antibody called TRC105, which binds to CD105. The full name of the agent is (64)Cu-DOTA-TRC105. The TRC105 antibody is currently being studied in a U.S. multicenter phase 1 human trial and multiple phase 2 therapy trials are planned or already underway for a range of cancer types. The current study specifically marks the effectiveness of using 64Cu-DOTA-TRC105 to gauge tumor angiogenesis. Results of the study showed this PET imaging agent to be highly effective, with rapid and persistent CD105-targeted uptake by tumors in mice.

Not only could this potentially be a turning point for cancer imaging and therapy, but some other major causes of death like heart attack, stroke and atherosclerosis also actively demonstrate the over-expression of CD105. Molecular imaging of this protein could one day lead to expanded tools for the detection and treatment of any number of diseases characterized by enhanced angiogenesis.

Read more...

Scientists Shed Light On The Private Lives Of Electrons

A Princeton researcher and his international collaborators have used lasers to peek into the complex relationship between a single electron and its environment, a breakthrough that could aid the development of quantum computers. The technique reveals how an isolated electron and its surroundings develop a relationship known as a Kondo state – a state of matter that is of great interest to physicists and engineers. The results not only yield insights into a long-standing quandary in theoretical physics, but also may help scientists understand how to store information at the smallest possible scales, which would open vast new realms of computing power.

"What we've done is illuminate the private life of a single electron," said Hakan Tureci, an assistant professor of electrical engineering at Princeton and a lead researcher on the project. "It's taken nearly a century to isolate, control and probe a single electron in this way – an extraordinary feat enabled by quantum theory, cryogenics and nanotechnology."

The research was conducted by an international team of scientists from the United States, Germany and Switzerland. The researchers on the project included Tureci, Atac Imamoglu, a professor at Swiss Federal Institute of Technology Zurich in Switzerland, Jan von Delft, a professor at LMU Munich, and Leonid Glazman, a professor at Yale University.

The key theoretical results and a proposal for testing the ideas experimentally were published March 11 in the journal Physical Review Letters.

These theoretical projections were recently confirmed in experiments led by Imamoglu, which were published today in the journal Nature.

The research brings fresh insight to the study of the Kondo problem, a phenomenon first observed in the 1930s, when researchers were surprised to find that resistance to electricity flowing through certain metals increases at very low temperatures. Normally, resistance through metals decreases as temperature is lowered, but that was not the case with these metals.

The phenomenon was explained 30 years later by Japanese scientist, Jun Kondo, as resulting from the presence of cobalt or other magnetic impurities in the metals.

Scientists have further realized that the Kondo effect results from a relationship between electrons known as "entanglement" in which the quantum state of one electron is tied to those of neighboring electrons, even if the particles are later separated by considerable distances. In the case of Kondo effect, a trapped electron is entangled in a complex manner with a cloud of surrounding electrons.

Read more...

Scientists Use 'Optogenetics' To Control Reward-seeking Behavior

Using a combination of genetic engineering and laser technology, researchers at the University of North Carolina at Chapel Hill have manipulated brain wiring responsible for reward-seeking behaviors, such as drug addiction. The work, conducted in rodent models, is the first to directly demonstrate the role of these specific connections in controlling behavior. The UNC study, published online on June 29, 2011, by the journal Nature, uses a cutting-edge technique called "optogenetics" to tweak the microcircuitry of the brain and then assess how those changes impact behavior. The findings suggest that therapeutics targeting the path between two critical brain regions, namely the amygdala and the nucleus accumbens, represent potential treatments for addiction and other neuropsychiatric diseases.

"For most clinical disorders we knew that one region or another in the brain was important, however until now we didn't have the tools to directly study the connections between those regions," said senior study author Garret D. Stuber, PhD, assistant professor in the departments of cell and molecular physiology, psychiatry and the Neuroscience Center in UNC School of Medicine. "Our ability to perform this level of sophistication in neural circuit manipulation will likely to lead to the discovery of molecular players perturbed during neuropsychiatric illnesses."

Because the brain is comprised of diverse regions, cell types and connections in a compact space, pinpointing which entity is responsible for what function can be quite tricky. In the past, researchers have tried to get a glimpse into the inner workings of the brain using electrical stimulation or drugs, but those techniques couldn't quickly and specifically change only one type of cell or one type of connection. But optogenetics, a technique that emerged six years ago, can.

In the technique, scientists transfer light-sensitive proteins called "opsins" – derived from algae or bacteria that need light to grow – into the mammalian brain cells they wish to study. Then they shine laser beams onto the genetically manipulated brain cells, either exciting or blocking their activity with millisecond precision.

In Stuber's initial experiments, the target was the nerve cells connecting two separate brain regions associated with reward, the amygdala and the nucleus accumbens. The researchers used light to activate the connections between these regions, essentially "rewarding" the mice with laser stimulations for performing the mundane task of poking their nose into a hole in their cage. They found that the opsin treated mice quickly learned to "nosepoke" in order to receive stimulation of the neural pathway. In comparison, the genetically untouched control mice never caught onto the task.

Then Stuber and his colleagues wanted to see whether this brain wiring had a role in more natural behavioral processes. So they trained mice to associate a cue – a light bulb in the cage turning on – to a reward of sugar water. This time the opsin that the researchers transferred into the brains of their rodent subjects was one that would shut down the activity of neural connections in response to light. As they delivered the simple cue to the control mice, they also blocked the neuronal activity in the genetically altered mice. The control mice quickly began responding to the cue by licking the sugar-producing vessel in anticipation, whereas the treated mice did not give the same response.

Read more...

Scientists Develop Sensitive Skin For Robots

Our skin is a communicative wonder: The nerves convey temperature, pressure, shear forces and vibrations – from the finest breath of air to touch to pain. At the same time, the skin is the organ by which we set ourselves apart from our environment and distinguish between environment and body. Scientists at TUM are now developing an artificial skin for robots with a similar purpose: It will provide important tactile information to the robot and thus supplement its perception formed by camera eyes, infrared scanners and gripping hands. As with human skin, the way the artificial skin is touched could, for example, lead to a spontaneous retreat (when the robot hits an object) or cause the machine to use its eyes for the first time to search for the source of contact. Such behavior is especially important for robotic helpers of people traveling in constantly changing environments. According to robot vision, this is just a regular apartment in which things often change position and people and pets move around. "In contrast to the tactile information provided by the skin, the sense of sight is limited because objects can be hidden," explains Philip Mittendorfer, a scientist who develops the artificial skin at the Institute of Cognitive Systems at Technical University of Munich (Technische Universitaet Muenchen, TUM).

The centerpiece of the new robotic shell is a 5 square centimeter hexagonal plate or circuit board. Each small circuit board contains four infrared sensors that detect anything closer than 1 centimeter. "We thus simulate light touch," explains Mittendorfer. "This corresponds to our sense of the fine hairs on our skin being gently stroked." There are also six temperature sensors and an accelerometer. This allows the machine to accurately register the movement of individual limbs, for example, of its arms, and thus to learn what body parts it has just moved. "We try to pack many different sensory modalities into the smallest of spaces," explains the engineer. "In addition, it is easy to expand the circuit boards to later include other sensors, for example, pressure."

Plate for plate, the boards are placed together forming a honeycomb-like, planar structure to be worn by the robot. For the machine to have detection ability, the signals from the sensors must be processed by a central computer. This enables each sensory module to not only pass its own information, but to also serve as a data hub for different sensory elements. This happens automatically, ensuring that signals can go in alternative ways if a connection should fail.

Only a small piece of skin is currently complete. These 15 sensors, however, at least one on each segment of a long robot arm, already show that the principle works. Just a light pat or blow ensures that the arm reacts. "We will close the skin and generate a prototype which is completely enclosed with these sensors and can interact anew with its environment," claims Mittendorfer's supervisor, Prof. Gordon Cheng. Prof. Cheng expounds that this will be "a machine that notices when you tap it on the back… even in the dark."

Read more...

New Smartphone App Automatically Tags Photos

So much for tagging photographs with names, locations and activities yourself – a new cell phone application can take care of that for you. The system works by taking advantage of the multiple sensors on a mobile phone, as well as those of other mobile phones in the vicinity.

Dubbed TagSense, the new app was developed by students from Duke University and the University of South Carolina (USC) and unveiled at the ninth Association for Computing Machinery's International Conference on Mobile Systems, Applications and Services (MobiSys), being held in Washington, D.C.

"In our system, when you take a picture with a phone, at the same time it senses the people and the context by gathering information from all the other phones in the area," said Xuan Bao, a Ph.D. student in computer science at Duke who received his master's degree at Duke in electrical and computer engineering.

Bao and Chuan Qin, a visiting graduate student from USC, developed the app working with Romit Roy Choudhury, assistant professor of electrical and computer engineering at Duke's Pratt School of Engineering. Qin and Bao are currently involved in summer internships at Microsoft Research.

"Phones have many different kinds of sensors that you can take advantage of," Qin said. "They collect diverse information like sound, movement, location and light. By putting all that information together, you can sense the setting of a photograph and describe its attributes."

By using information about the environment of a photograph, the students believe they can achieve a more accurate tagging of a particular photograph than could be achieved by facial recognition alone. Such information about a photograph's entirety provides additional details that can then be searched at a later time.

For example, the phone's built-in accelerometer can tell if a person is standing still for a posed photograph, bowling or even dancing. Light sensors in the phone's camera can tell if the shot is being taken indoors or outdoors on a sunny or cloudy day. The sensors can also approximate environmental conditions – such as snow or rain -- by looking up the weather conditions at that time and location. The microphone can detect whether or not a person in the photograph is laughing, or quiet. All of these attributes are then assigned to each photograph, the students said.

Bao pointed out that with multiple tags describing more than just a particular person's name, it would be easier to not only organize an album of photographs for future reference, but find particular photographs years later. With the exploding number of digital pictures in the cloud and in our personal computers, the ability to easily search and retrieve desired pictures will be valuable in the future, he said.

Read more...

Time To Let Science Drive Great Lakes Policy On Asian Carp, Experts Say

The threat Asian carp pose to the Great Lakes community may be politically controversial, but pales in comparison to the costs and danger of continuing to wring hands over established facts. It's time, a Michigan State University fisheries expert says, to let science drive policy and put knowledge into action. "You know it's big when academics and the management community say we don't need five more years of study," said Bill Taylor, University Distinguished professor in global fisheries sustainability at Michigan State University and a member of MSU's Center for Systems Integration and Sustainability. "The costs of hydrological separation are high, but it's a one-time expense and remediation in the Great Lakes from these invasive species will eventually make separation look cheap."

Taylor is one of four Great Lakes and Mississippi River researchers publishing a paper which breaks down four recent assertions that downplay the threat of the invasive Asian carp and questions the need to investigate ways to physically separate the Great Lakes and Mississippi River basins to prevent the further spread of harmful non-native species.

Dividing the Waters: The Case for Hydrologic Separation of the North American Great Lakes and Mississippi River Basins is published today in the Journal of Great Lakes Research. In addition to Taylor, it is authored by Jerry Rasmussen of Natural Resource Management Associates in Le Claire, Iowa; Henry Regier, University of Toronto; and Richard Sparks, a senior scientist at the National Great Rivers Research and Education Center, Godfrey, Ill.

The authors conclude that the threats posed by the Asian carp and other invasive species remain high and warrant action to prevent further ecological and economic harm to the Great Lakes ecosystem.

The paper examines recent claims by policy makers that:

Existing electric barriers are effective in preventing the spread of the Asian carp.
It is too late to prevent an Asian carp invasion.
Asian carp will not thrive in the Great Lakes.
Asian carp are not likely to cause serious damage to the Great Lakes.
Implications that more study is needed are exasperating the science community, Taylor said. Science has done its job by reaching thoughtful and clear conclusion. Now, he said, is a time for action – or at the least a clear decision not to take action.

Read more...

Heavy Metal Meets Hard Rock: Battling Through The Ocean Crust's Hardest Rocks

Integrated Ocean Drilling Program (IODP) Expedition 335 Superfast Spreading Rate Crust 4 recently completed operations in Ocean Drilling Program (ODP) Hole 1256D, a deep scientific borehole that extends more than 1500 meters below the seafloor into the Pacific Ocean's igneous crust – rocks that formed through the cooling and crystallization of magma, and form the basement of the ocean floor. An international team of scientists led by co-chief scientists Damon Teagle (National Oceanographic Center Southampton, University of Southampton in the UK) and Benoît Ildefonse (CNRS, Université Montpellier 2 in France) returned to ODP Hole 1256D aboard the scientific research vessel, JOIDES Resolution, to sample a complete section of intact oceanic crust down into gabbros.

This expedition was the fourth in a series and builds on the efforts of three expeditions in 2002 and 2005.

Gabbros are coarse-grained intrusive rocks formed by the slow cooling of basaltic magmas. They make up the lower two-thirds of the ocean crust. The intrusion of gabbros at the mid-ocean ridges is the largest igneous process active on our planet with more than 12 cubic kilometers of new magma from the mantle intruded into the crust each year. The minerals, chemistry, and textures of gabbroic rocks preserve records of the processes that occur deep within the Earth's mid-ocean ridges, where new ocean crust is formed.

"The formation of new crust is the first step in Earth's plate tectonic cycle," explained Teagle. "This is the principal mechanism by which heat and material rise from within the Earth to the surface of the planet. And it's the motion and interactions of Earth's tectonic plates that drive the formation of mountains and volcanoes, the initiation of earthquakes, and the exchange of elements (such as carbon) between the Earth's interior, oceans, and atmosphere."

"Understanding the mechanisms that construct new tectonic plates has been a major, long-standing goal of scientific ocean drilling," added Ildefonse, "but progress has been inhibited by a dearth of appropriate samples because deep drilling (at depths greater than 1000 meters into the crust) in the rugged lavas and intrusive rocks of the ocean crust continues to pose significant technical challenges."

ODP Hole 1256D lies in the eastern equatorial Pacific Ocean about 900 kilometers to the west of Costa Rica and 1150 kilometers east of the present day East Pacific Rise. This hole is in 15 million year old crust that formed during an episode of "superfast" spreading at the ancient East Pacific Rise, when the newly formed plates were moving apart by more than 200 millimeters per year

Read more...

Takeoffs and Landings Cause More Precipitation Near Airports

Researchers have found that areas near commercial airports sometimes experience a small but measurable increase in rain and snow when aircraft take off and land under certain atmospheric conditions. The new study led by the National Center for Atmospheric Research (NCAR), is part of ongoing research that focuses on so-called hole punch and canal clouds that form when planes fly through certain mid-level clouds, forcing nearby air to rapidly expand and cool. This causes water droplets to freeze to ice and then turn to snow as they fall toward the ground, leaving behind odd-shaped gaps in the clouds.

The research team used satellite images and weather forecasting computer models to examine how often this type of inadvertent cloud seeding may occur within 62 miles (100 kilometers) of six commercial airports: London Heathrow, Frankfurt, Charles De Gaulle (Paris), Seattle-Tacoma, O'Hare (Chicago), and Yellowknife (Northwest Territories, Canada), as well as Byrd Station in Antarctica. They found that, depending on the airport and type of plane, the right atmospheric conditions typically exist up to 6 percent of the time, with somewhat more frequency in colder climates.

The lead author, NCAR scientist Andrew Heymsfield, says this phenomenon likely occurs at numerous other airports, especially in mid- and high-latitude areas during colder months. The key variable is whether there are cloud layers in the vicinity that contain water droplets at temperatures far below freezing, which is a common occurrence.

He adds that more research is needed before scientists can determine whether the precipitation produced by this effect is significant. The inadvertent cloud seeding may increase the need to de-ice planes more often, he adds.

"It appears to be a rather widespread effect for aircraft to inadvertently cause some measureable amount of rain or snow as they fly through certain clouds," Heymsfield says. "This is not necessarily enough precipitation to affect global climate, but it is noticeable around major airports in the midlatitudes."

The researchers did not estimate the total amount of rain or snow that would result from such inadvertent cloud seeding. However, they analyzed radar readings that, in one case, indicated a snowfall rate of close to an inch an hour after several planes had passed through.

The study is being published this week in the journal Science. Researchers from NASA Langley Research Center and the University of Wyoming, Laramie, co-authored the paper. Funding came from the National Science Foundation, which is NCAR's sponsor, and from Nasa.

Read more...

Scientists Hope To Get Glimpse Of Adolescent Universe From Revolutionary İnstrument-On-a-chip

Scientists know what the universe looked like when it was a baby. They know what it looks like today. What they don't know is how it looked in its youth. Thanks to technological advances, however, scientists hope to complete the photo album and provide a picture of how the cosmos developed into the kind of place that could support life like that found on Earth. They plan to gather these never-before-obtained insights with a potentially "game-changing" instrument that is expected to be 10,000 times more sensitive than the current state-of-the-art.

The instrument is being designed to gather data of objects so distant from Earth that they no longer can be observed in visible light, only in the infrared bands of the electromagnetic spectrum. In particular, this instrument, called a spectrometer, will measure the properties of the infrared light to identify the object's composition and other physical properties.

Just as impressive, the aptly named MicroSpec would be able to perform these highly sensitive observations from a very small platform -- so small, in fact, that all its components would fit onto a silicon wafer measuring just four inches in diameter.

Now under development by engineers and scientists at the Goddard Space Flight Center in Greenbelt, Md., the instrument is a strong contender for future flight missions in astrophysics and Earth science, said astrophysicist Harvey Moseley, who is leading the instrument-development effort. "It's quite a new and, we think, revolutionary concept," he said. "If we can prove it, everyone will want it."

Stars to Hemoglobin

Although the technology could help answer a plethora of science questions, it is ideally suited for studying the evolution of the universe and by extension, humanity's place in it.

Past NASA missions, including the Goddard-developed Cosmic Background Explorer and the Wilkinson Microwave Anistropy Probe, studied the infant universe. They gathered information about the primordial light created during the universe's creation. Both detected tiny temperature differences, which pointed to density differences that ultimately gave rise to the first stars and galaxies formed 400,000 million years after the Big Bang.

However, scientists have yet to study these objects with great precision. They also have not studied light emitted by the life-sustaining elements created in these first stars and later distributed across the universe in stellar explosions.

"Right after the Big Bang, the only elements that were really present in any abundance were hydrogen and helium," Moseley said. "The formation of stars and the nuclear reaction that took place inside these first stars have created essentially all the elements that constitute the things that we see around here -- the carbon in our bodies and the iron and hemoglobin in our blood. All these elements were formed in the many generations of stars that have been born and have died since the Big Bang."

By building an instrument like MicroSpec, and studying this specific era in the universe's nearly 14-billion-year history, scientists will "get a very clear picture of how the universe developed into the kind of place that could support life like us," Moseley added.

Unprecedented Instrument

Not only is the science unprecedented, so is the instrument, said Wen-Ting Hsieh, a Goddard Detector Development Laboratory engineer who has been working with Moseley since 2009 to advance the technology in preparation for a future mission. "The most important thing is it is small and it's super-sensitive."

Read more...

Wifi 'Napping' Doubles Phone Battery Life

A Duke University graduate student has found a way to double the battery life of mobile devices – such as smartphones or laptop computers – by making changes to WiFi technology. WiFi is a popular wireless technology that helps users download information from the Internet. Such downloads, including pictures, music and video streaming, can be a major drain of battery.

The energy drain is especially severe in the presence of other WiFi devices in the neighborhood. In such cases, each device has to "stay awake" before it gets its turn to download a small piece of the desired information. This means that the battery drainage in downloading a movie in Manhattan is far higher than downloading the same movie in a farmhouse in the Midwest, the researchers said.

The Duke-developed software eliminates this problem by allowing mobile devices to sleep while a neighboring device is downloading information. This not only saves energy for the sleeping device, but also for competing devices as well.

The new system has been termed SleepWell by Justin Manweiler, a graduate student in computer science under the direction of Romit Roy Choudhury, assistant professor of electrical and computer engineering at Duke's Pratt School of Engineering. The SleepWell system was presented at the ninth Association for Computing Machinery's International Conference on Mobile Systems, Applications and Services (MobiSys), being held in Washington, D.C.

Manweiler described the system by analogy: "Big cities face heavy rush hours as workers come and leave their jobs at similar times. If work schedules were more flexible, different companies could stagger their office hours to reduce the rush. With less of a rush, there would be more free time for all, and yet, the total number of working hours would remain the same."

"The same is true of mobile devices trying to access the Internet at the same time," Manweiler said. "The SleepWell-enabled WiFi access points can stagger their activity cycles to minimally overlap with others, ultimately resulting in promising energy gains with negligible loss of performance."

With cloud computing on the horizon, mobile devices will need to access the Internet more frequently -- however, such frequent access could be severely constrained by the energy toll that WiFi takes on the device's battery life, according to Roy Choudhury.

Read more...

Wednesday, June 29, 2011

First Patients Receive Lab-grown Blood Vessels From Donor Cells

For the first time, blood vessels created in the lab from donor skin cells were successfully implanted in patients. Functioning blood vessels that aren't rejected by the immune system could be used to make durable shunts for kidney dialysis, and potentially to improve treatment for children with heart defects and adults needing coronary or other bypass graft surgery. For the first time, human blood vessels grown in a laboratory from donor skin cells have been successfully implanted into patients, according to new research presented in the American Heart Association's Emerging Science Series webinar.

While more testing is needed, such "off-the-shelf" blood vessels could soon be used to improve the process and affordability of kidney dialysis.

"Our approach could allow hundreds of thousands of patients to be treated from one master cell line," said study lead author Todd N. McAllister, Ph.D., co-founder and chief executive officer of Cytograft Tissue Engineering Inc., of Novato, Calif.

The grafts also have the potential to be used in lower limb bypass to route blood around diseased arteries, to repair congenital heart defects in pediatric patients and to fix damaged arteries in soldiers, who might otherwise lose a limb, said McAllister.

The tissue-engineered blood vessels, produced from sheets of cultured skin cells rolled around temporary support structures, were used to create access shunts between arteries and veins in the arm for kidney dialysis in three patients. These shunts, which connect an artery to a vein, provide access to the blood for dialysis. The engineered vessels were about a foot long with a diameter of 4.8 millimeters.

At follow-up exams up to eight months after implantation, none of the patients had developed an immune reaction to the implants, and the vessels withstood the high pressure and frequent needle punctures required for dialysis. Shunts created from patients' own vessels or synthetic materials are notoriously prone to failure.

Investigators previously showed that using vessels individually created from a patient's own skin cells reduced the rate of shunt complications 2.4-fold over a 3-year period. The availability of off-the-shelf vessels could avoid the expense and months-long process involved in creating custom vessels for each patient, making the technique feasible for widespread use.

Besides addressing a costly and vexing problem in kidney dialysis, off-the-shelf blood vessels might someday be used instead of harvesting patients' own vessels for bypass surgery. A larger, randomized trial of the grafts is under way for kidney dialysis, and human trials have been initiated to assess the safety and effectiveness of these grafts for lower-limb bypass.

The study will be presented in the American Heart Association's Emerging Science Series, which will be held at 1 p.m. EDT/ 12 p.m. CDT. The series is a free online webinar presentation of cutting-edge science. The Emerging Science Series provides a new venue for presenting the latest cardiovascular scientific breakthroughs several times a year, when the discoveries are ready to be presented rather than waiting for a regularly scheduled meeting. Each study is handled in a peer-reviewed process similar to late-breaking clinical trials presented at AHA's annual Scientific Sessions.

Read more...

International Team Demonstrates Subatomic Quantum Memory İn Diamond

Physicists working at the University of California, Santa Barbara and the University of Konstanz in Germany have developed a breakthrough in the use of diamond in quantum physics, marking an important step toward quantum computing. The results are reported in this week's online edition of Nature Physics. The physicists were able to coax the fragile quantum information contained within a single electron in diamond to move into an adjacent single nitrogen nucleus, and then back again using on-chip wiring.

"This ability is potentially useful to create an atomic-scale memory element in a quantum computer based on diamond, since the subatomic nuclear states are more isolated from destructive interactions with the outside world," said David Awschalom, senior author. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke director of the California NanoSystems Institute.

Awschalom said the discovery shows the high-fidelity operation of a quantum mechanical gate at the atomic level, enabling the transfer of full quantum information to and from one electron spin and a single nuclear spin at room temperature. The process is scalable, and opens the door to new solid-state quantum device development.

Scientists have recently shown that it is possible to synthesize thousands of these single electron states with beams of nitrogen atoms, intentionally creating defects to trap the single electrons. "What makes this demonstration particularly exciting is that a nitrogen atom is a part of the defect itself, meaning that these sub-atomic memory elements automatically scale with the number of logical bits in the quantum computer," said lead author Greg Fuchs, a postdoctoral fellow at UCSB.

Rather than using logical elements like transistors to manipulate digital states like "0" or "1," a quantum computer needs logical elements capable of manipulating quantum states that may be "0" and "1" at the same time. Even at ambient temperature, these defects in diamond can do exactly that, and have recently become a leading candidate to form a quantum version of a transistor.

However, there are still major challenges to building a diamond-based quantum computer. One of these is finding a method to store quantum information in a scalable way. Unlike a conventional computer, where the memory and the processor are in two different physical locations, in this case they are integrated together, bit-for-bit.

Read more...

Tiny Cell Patterns Reveal The Progression Of Development and Disease

Scientists have long known that, to form tissue structures and organs, stem cells migrate and differentiate in response to the other cells, matrix, and signals in their environment. But not much is known about these developmental processes nor how to distinguish between normal and pathological behaviors. A team of researchers at Columbia Engineering School has developed a new technique to evaluate human stem cells using cell micropatterning — a simple but powerful in vitro tool that will enable scientists to study the initiation of left-right asymmetry during tissue formation, to diagnose disease, and to study factors that could lead to certain birth defects. The study, led by Gordana Vunjak-Novakovic, Professor of Biomedical Engineering at Columbia University's Fu Foundation School of Engineering and Applied Science, will be published in the online Early Edition of the Proceedings of the National Academy of Sciences the week of June 27, 2011.

Vunjak-Novakovic and her team have long been interested in developing technologies to investigate developmental processes of cells. In 2008 Leo Wan, a postdoctoral scientist from her lab, printed human cells onto microscopically small patterns to investigate the shape-force control of cell function; this study helped them learn more about the connections between mechanical tension generated inside the cell and the decisions that cells make.

As they looked into the numerous videos they made to document and analyze the shapes of cells on micropatterns over time in culture, they noticed that the cell populations on micropatterns had a life of their own. These small communities of cells would undergo directional motion and form chiral alignment after a day or two of culture, with all cells moving in the same direction within the boundaries. Vunjak-Novakovic said "It was really the consistency of this motion pattern – the same cell type would always take the same direction with extremely high statistical power – that was intriguing and made us do hundreds of experiments."

They found that the direction of motion depended on cell type — that normal cells and cancer cells of the same type show opposite direction of motion, and that the mechanism by which the directional motion is established involves the actin stress fibers inside the cell. "What's really interesting about this work is that it shows that cells can establish a consistently biased asymmetry without the help of large-scale embryonic structures," said Vunjak-Novakovic. "Our study clearly demonstrated that mammalian cells could establish and organize consistent asymmetry without cilia or node, a finding of great interest to those of us in cell and both developmental biology and stem cell bioengineering. The use of cell patterning techniques for studying cell asymmetry, or chirality, is entirely novel, and it enables obtaining a lot of biological and medical information by analyzing cell motion on tiny patterns."

Read more...

Student Team İnvents Device To Cut Dialysis Risk

Johns Hopkins University graduate students have invented a device to reduce the risk of infection, clotting and narrowing of the blood vessels in patients who need blood-cleansing dialysis because of kidney failure. The device, designed to be implanted under the skin in a patient's leg, would give a technician easy access to the patient's bloodstream and could be easily opened and closed at the beginning and end of a dialysis procedure.

The prototype has not yet been used in human patients, but testing in animals has begun.

The students learned about the need for such a device last year while accompanying physicians on hospital rounds as part of their academic program. They watched as one doctor performed a procedure to open a narrowed blood vessel at a kidney patient's dialysis access site. They learned that this narrowing was a common complication facing kidney patients.

The students discovered that kidney failure each year requires 1.5 million people globally and 350,000 in the United States alone to undergo regular hemodialysis to prevent a fatal buildup of toxins in the bloodstream. The students also learned that the three most common ways to connect the machine to a patient's bloodstream work only for a limited time because of problems with infection, blood clots and narrowing of the blood vessels. Current dialysis access options are "grossly inadequate," contributing to increased healthcare expenses and, in some cases, patient deaths, the students say.

To address these problems, the students developed an access port that can be implanted in the leg beneath the skin, reducing the risk of infection. The Hemova Port's two valves can be opened by a dialysis technician with a syringe from outside the skin. The technician can similarly close the valves when the procedure is over, an approach that helps avoid infection and clotting. The device also includes a simple cleaning system, serving as yet another way to deter infections.

Read more...

Insight İnto Plant Behavior Could Aid Quest For Efficient Biofuels

Tiny seawater algae could hold the key to crops as a source of fuel and plants that can adapt to changing climates. Researchers at the University of Edinburgh have found that the tiny organism has developed coping mechanisms for when its main food source is in short supply.

Understanding these processes will help scientists develop crops that can survive when nutrients are scarce and to grow high-yield plants for use as biofuels.

The alga normally feeds by ingesting nitrogen from surrounding seawater but, when levels are low, it reduces its intake and instead absorbs other nutrients, such as carbon and phosphorus, from the water. The organism is also able to recycle nitrogen from its own body, breaking down proteins that are plentiful to make other proteins that it needs to survive.

Nitrogen is needed by all plants to survive but the alga's survival strategies vary from most other plants which, when nitrogen is scarce, tend to widen their search for it.

Like many organisms, the alga – Ostreococcus tauri – is also driven by daylight and its body clock – for example, proteins that produce starch for food are active in the evening, after the plant has photosynthesised sugars from sunlight in the day.

The study, in the Journal of Proteomics, was funded by the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Dr Sarah Martin, of the University of Edinburgh, who took part in the study, said: "This tiny alga certainly punches above its weight when it comes to survival. Our study has revealed some curious ways in which the organism finds the nutrients it needs to stay alive – tricks like these could be useful to us in developing sustainable crops for the future."

Read more...

Inkjet Printing Could Change The Face Of Solar Energy İndustry

Inkjet printers, a low-cost technology that in recent decades has revolutionized home and small office printing, may soon offer similar benefits for the future of solar energy. Engineers at Oregon State University have discovered a way for the first time to create successful "CIGS" solar devices with inkjet printing, in work that reduces raw material waste by 90 percent and will significantly lower the cost of producing solar energy cells with some very promising compounds.

High performing, rapidly produced, ultra-low cost, thin film solar electronics should be possible, scientists said.

The findings have been published in Solar Energy Materials and Solar Cells, a professional journal, and a patent applied for on the discovery. Further research is needed to increase the efficiency of the cell, but the work could lead to a whole new generation of solar energy technology, researchers say.

"This is very promising and could be an important new technology to add to the solar energy field," said Chih-hung Chang, an OSU professor in the School of Chemical, Biological and Environmental Engineering. "Until now no one had been able to create working CIGS solar devices with inkjet technology."

Part of the advantage of this approach, Chang said, is a dramatic reduction in wasted material. Instead of depositing chemical compounds on a substrate with a more expensive vapor phase deposition – wasting most of the material in the process – inkjet technology could be used to create precise patterning with very low waste.

"Some of the materials we want to work with for the most advanced solar cells, such as indium, are relatively expensive," Chang said. "If that's what you're using you can't really afford to waste it, and the inkjet approach almost eliminates the waste."

One of the most promising compounds and the focus of the current study is called chalcopyrite, or "CIGS" for the copper, indium, gallium and selenium elements of which it's composed. CIGS has extraordinary solar efficiency – a layer of chalcopyrite one or two microns thick has the ability to capture the energy from photons about as efficiently as a 50-micron-thick layer made with silicon.

In the new findings, researchers were able to create an ink that could print chalcopyrite onto substrates with an inkjet approach, with a power conversion efficiency of about 5 percent. The OSU researchers say that with continued research they should be able to achieve an efficiency of about 12 percent, which would make a commercially viable solar cell.

In related work, being done in collaboration with Greg Herman, an OSU associate professor of chemical engineering, the engineers are studying other compounds that might also be used with inkjet technology, and cost even less.

Some approaches to producing solar cells are time consuming, or require expensive vacuum systems or toxic chemicals. OSU experts are working to eliminate some of those roadblocks and create much less costly solar technology that is also more environmentally friendly. New jobs and industries in the Pacific Northwest could evolve from such initiatives, they say.

Read more...

Silver Pen Has The Write Stuff For Flexible Electronics

The pen may have bested the sword long ago, but now it's challenging wires and soldering irons. University of Illinois engineers have developed a silver-inked rollerball pen capable of writing electrical circuits and interconnects on paper, wood and other surfaces. The pen is writing whole new chapters in low-cost, flexible and disposable electronics.

Led by Jennifer Lewis, the Hans Thurnauer professor of materials science and engineering at the U. of I., and Jennifer Bernhard, a professor of electrical and computer engineering, the team published its work in the journal Advanced Materials.

"Pen-based printing allows one to construct electronic devices 'on-the-fly,' " said Lewis, the director of the Frederick Seitz Materials Research Laboratory at the U. of I. "This is an important step toward enabling desktop manufacturing (or personal fabrication) using very low cost, ubiquitous printing tools."

While it looks like a typical silver-colored rollerball pen, this pen's ink is a solution of real silver. After writing, the liquid in the ink dries to leave conductive silver pathways – in essence, paper-mounted wires. The ink maintains its conductivity through multiple bends and folds of the paper, enabling devices with great flexibility and conformability.

Metallic inks have been used in approaches using inkjet printers to fabricate electronic devices, but the pen offers freedom and flexibility to apply ink directly to paper or other rough surfaces instantly, at low cost and without programming.

"The key advantage of the pen is that the costly printers and printheads typically required for inkjet or other printing approaches are replaced with an inexpensive, hand-held writing tool," said Lewis, who is also affiliated with the Beckman Institute for Advanced Science and Technology.

Read more...

Tiny Ring Laser Accurately Detects and Counts Nanoparticles

A tiny doughnut-shaped laser is the latest marvel of silicon microminiaturization, but instead of manipulating bits it detects very small particles. Small particles play a big — and largely unnoticed — role in our everyday lives. Virus particles make us sick, salt particles trigger cloud formation, and soot particles sift deep into our lungs and make it harder to breathe. The sensor belongs to a category called whispering gallery resonators, which work like the famous whispering gallery in St. Paul's Cathedral in London, where someone on the one side of the dome can hear a message spoken to the wall by someone on the other side. Unlike the dome, which has resonances or sweet spots in the audible range, the sensor resonates at light frequencies.

Light traveling round the micro-laser is disturbed by a particle that lands on the ring, changing the light's frequency. The ring can count the touch-down of as many as 800 nanoparticles before the signals begin to be lost in the noise. By exciting more than one mode in the ring, scientists can double-check the accuracy of the count. And by changing the "gain medium," they can adapt the sensor for water rather than air.

Lan Yang, PhD, assistant professor of electrical and systems engineering at Washington University in St. Louis who leads the team that fabricated the new sensor, says that there is already lively interest in its commercialization in fields ranging from biology to aerosol science. The sensor is described and characterized in the June 26 online edition of Nature Nanotechnology.

Whispering gallery resonator becomes microlaser

A whispering gallery resonator supports "frequency degenerate modes" (modes, or patterns of excitation in the ring, with the same frequency, one traveling clockwise and the other counterclockwise around the ring.

The mode fields have "evanescent tails" that penetrate the surface of the ring and probe the surrounding medium. When a particle lands on one of the "hot spots" it scatters energy from one of the modes into the other, and the modes adopt slightly different resonance frequencies. This is referred to as mode splitting.

In an earlier work, Yang team used mode splitting in a simple glass ring that functioned as a waveguide for light coupled into it from outside. Because the ring was passive, the external-laser had to be an expensive tunable laser so that it could scan a frequency range looking for the ring's resonances to measure mode splitting. (For more information on this sensor see "Tiny sensor takes measure of nanoparticles.")

The new sensor differs from earlier whispering gallery resonators in that it is itself a miniature laser rather than the resonating cavity of an external laser.

Read more...

Quartix 12-Month Vehicle Tracking Contract – with No Set-Up Charges–Sees Strong Demand

Quartix has announced it is equipping more than 2,000 vehicles a month with its real-time tracking system. Quartix is experiencing especially strong demand for its 12-month vehicle tracking contract from owners of HGV and light-commercial fleets.

“We believe we are continuing to outperform all our competitors in the UK, which means we remain in a class of our own,” said Andy Kirk, sales and marketing director.

With prices starting at just £19.50 per month, including installation and setup, it is one of today’s most cost-effective and comprehensive telematics systems – uniquely available with a minimum contract commitment.

Mr Kirk added: “We won tremendous acceptance from customers for our pay-as-you-go service, which offered the right to cancel after three months.

“However, many companies suggested they would be happy to sign up for twelve months if there were no installation charge, and last year that is exactly what we provided. Its success speaks for itself, with UK installations last month at more than 2,000.”

At the same time, Quartix has earned an enviable reputation for supplying one of the most robust, reliable and easy to use online systems on the market – backed by a comprehensive warranty and the skills of a highly committed support team.

Today, more than 3,000 customers across a wide range of sectors – including hauliers, logistics companies, government organisations, housing associations, construction, hospital trusts, the emergency services, SMEs and large British brands – use Quartix telematics, with the company’s unique own-design tracking unit installed in vehicles.

Read more...

Kier To Build Isle Of Sheppey Academy

Formerly part of the Kent Building Schools for the Future LEP1 programme, the £54m Isle of Sheppey Academy project will see construction of a facility across two sites on the east and west of the island, to serve 2,450 students. The Academy, specialising in business, enterprise and sport, will include a media suite, drama facilities, dance studios, performance studio, sports halls and outdoor sporting facilities, as well as a vocational centre.

Contracts have now been signed for Kier to deliver the £54m Isle of Sheppey Academy on behalf of Kent County Council. The academy will be built to a renewable energy strategy aimed at reducing emissions by 60% compared with 2002 building regulation standards.

Kier Group chief executive Paul Sheffield commented: As a company committed to providing first class learning establishments for the 21st century, Kier is particularly proud to be involved with the delivery of this landmark scheme. The construction team looks forward to demonstrating its ability to deliver educational facilities that enhance the learning experience and are of award-winning calibre.”

Executive head teachers Alan Klee and David Rahman commented: “We are very excited to be working with Kier to construct the new Academy buildings. The construction process will provide Academy students and staff with a unique opportunity to see the different phases of a large building project - a true learning journey for us all. Working in close collaboration with Kier we will ensure there is no disruption to learning as the iconic buildings take shape.”

Read more...

Monday, June 27, 2011

Stevens Biomedical Engineering Students Fight Hypothermia On The Battlefield

A Biomedical Engineering Senior Design team at Stevens Institute of Technology is working with the U.S. Army and New Jersey physicians to develop a new device to combat hypothermia among wounded soldiers. Team "Heat Wave" is composed of seniors Walter Galvez, Amanda Mendez, Geoffrey Ng, and Dalia Shendi, in addition to Biomedical Engineering graduate student Maia Hadidi. The team's faculty advisor is Dr. Vikki Hazelwood and consulting physician is Dr. Herman Morchel from Hackensack University Medical Center. Additional expert support from industry and military was provided by Jan Skadberg, RN, Colonel Boots Hodges, Stevens Burrows, and Major Jim Fulton.

"Stevens unique Senior Design approach gave students real-world experience developing a practical technology in collaboration with the military," says Dr. Hazelwood. "This is a fantastic project with a life-saving application as well as entrepreneurial potential."

Developing a portable device to re-warm patients suffering from hypothermia has the potential to substantially impact battlefield medicine. Loss of blood after trauma is the number one cause of combat fatalities in the United States armed forces. Hypothermia complications associated with loss of blood are shown to reduce the rate of survival after severe trauma by 22.5%.

"Current methods for fighting hypothermia in combat zones are to use an IV drip and wool blanket," says Geoffrey. "With these means it takes up to 16 hours to increase the core body temperature to a more stable point."

The Heat Wave system uses heated, humidified air delivered through an oxygen mask to capitalize on the patient's respiratory system. Capitalizing on the fact that the entire blood volume passes through the lungs, this heat is rapidly transferred to the blood via convection. Tests of their system show it is more effective than current treatments.

"We can decrease the time needed to resuscitate a hypothermic patient to just four hours, a 75% reduction in treatment time," reports Maia. "Not only does this increase survival rates for the patient, but it also frees up field medics so they can attend to others."

The team developed a prototype to test their concept. A heater/humidifier pumps air into an insulated container simulating the lungs, which is connected to an additional container representing the cardiovascular system. Heat transfers between the containers via a water-filled tube to simulate convection between lungs and blood. Heat and humidity are continually recorded via sensors wired to a laptop computer.

"The hands-on Senior Design process is very helpful," Dalia says. "Before Stevens, I had little real experience, and now I know I can research a problem, look at the market for a product, and build and test a successful prototype."

Read more...

What Doesn't Kill The Brain Makes İt Stronger

Johns Hopkins scientists say that a newly discovered "survival protein" protects the brain against the effects of stroke in rodent brain tissue by interfering with a particular kind of cell death that's also implicated in complications from diabetes and heart attack. Reporting in the May 22 advance online edition of Nature Medicine, the Johns Hopkins team says it exploited the fact that when brain tissue is subjected to a stressful but not lethal insult a defense response occurs that protects cells from subsequent insult. The scientists dissected this preconditioning pathway to identify the most critical molecular players, of which a newly identified protein protector – called Iduna -- is one.

Named for a mythological Norwegian goddess who guards a tree full of golden apples used to restore health to sick and injured gods, the Iduna protein increased three- to four-fold in preconditioned mouse brain tissue, according to the scientists.

"Apparently, what doesn't kill you makes you stronger," says Valina Dawson, Ph.D., professor of neurology and neuroscience in the Johns Hopkins Institute of Cell Engineering. "This protective response was broad in its defense of neurons and glia and blood vessels – the entire brain. It's not just a delay of death, but real protection that lasts for about 72 hours."

The team noted that Iduna works by interrupting a cascade of molecular events that result in a common and widespread type of brain cell death called parthanatos often found in cases of stroke, Parkinson's Disease, diabetes and heart attack. By binding with a molecule known as PAR polymer, Iduna prevents the movement of cell-death-inducing factor (AIF) into a cell's nucleus.

In some of the experiments, Dawson and her team exposed mouse brain cells to short bursts of a toxic chemical, and then screened these "preconditioned" cells for genes that turned on as a result of the insult. Focusing on Iduna, the researchers turned up the gene's activity in the cells during exposure to the toxic chemical that induced preconditioning. Cells deficient in Iduna did not survive, but those with more Iduna did.

In another series of experiments in live mice, the team injected a toxic chemical into the brains of a control group of normal mice and also into a group that had been genetically engineered to produce three to four times the normal amount of Iduna – as if they had been preconditioned. The engineered mice with more Iduna were much less susceptible to brain cell death: They had more functional tissue and markedly reduced stroke damage in their brains. In addition, the Iduna mice were less impaired in their ability to move around in their cages.

Read more...

Chemical Engineers At Stevens İnvent Portable Hydrogen Reactor For Fuel Cells

Chemical Engineering students at Stevens Institute of Technology are transforming the way that American soldiers power their battery-operated devices by making a small change: a really small change. Capitalizing on the unique properties of microscale systems, the students have invented a microreactor that converts everyday fossil fuels like propane and butane into pure hydrogen for fuel cell batteries. These batteries are not only highly efficient, but also can be replenished with hydrogen again and again for years of resilient performance in the field. With batteries consuming a substantial amount of a soldier's gear weight, the Army has a high interest in replacing the current paradigm of single-use batteries with a reliable, reusable power source. The Stevens-made microreactors thus have the potential to not only reduce waste from disposable batteries, but also provide American soldiers with a dependable way to recharge the batteries for the critical devices that keep them safe.

Current methods for generating fuel cell hydrogen are both sophisticated and risky, requiring high temperatures and a vacuum to produce the necessary chemical-reaction-causing plasmas. Once in a container, hydrogen is a highly volatile substance that is dangerous and expensive to transport.

The Stevens microreactor overcomes both of these barriers by using low temperatures and atmospheric pressure, and by producing hydrogen only as needed to avoid creating explosive targets in combat areas. These advanced reactors are created using cutting-edge microfabrication techniques, similar to those used to create plasma television screens, which use microscale physics to produce plasma under normal atmospheres.

The team has already had success producing hydrogen from methanol. After gasifying methanol by suspending it in hot nitrogen gas, the mixture is drawn into a 25µm channel in the microreactor. There, it reacts with plasma to cause thermal decomposition, breaking down the methanol into its elemental components. Now the team is conducting tests to see what kind of yields are realizable from various starter fuels. Eventually, soldiers will be able to convert everyday liquid fuels like propane or butane, commonly found on military bases, into high-potency juice for portable fuel cell batteries.

Read more...

An Electric Motorcycle İs Created At Carlos III University Of Madrid

Moto, was created and developed by LGN Tech Design, a spin-off company that has its origins in a line of research begun in the Laboratorio de Máquinas (MAQLAB – Machine Laboratory) of UC3M and receives support from the University's Vice-Chancellor's Office of Research through the Business Incubator UC3M Science Park. "The technology that we have developed is a result of the design of a platform for the modeling, analysis and evolution of racing motorcycles, which was then applied to the development of the e-Moto", comments the head of the MAQLAB, Professor Juan Carlos García Prada, of the Mechanical Engineering Department at UC3M. The prototype of the e-Moto recently participated in the first FIM E-Power electric motorcycle world championship (100% electric), organized by the International Motorcycling Federation. The model came in third, a position of merit according to its creators, who point out that, although there were only three contestants on the track at the Magny-Cours circuit in France, the motorcycle managed to finish the race with no mechanical problems whatsoever.

This is a vehicle that was conceived as an electric motorcycle from the very beginning, with battery recharging systems that offer quite remarkable results, and which are similar to those of an automobile. Among the technical features of the prototype, its light weight (145 Kg.) in comparison with other existing models stands out, as does its alternating current motor, which boasts a maximum 95 horsepower. It also features a system for recharging its batteries when braking and an innovative front suspension based on a system that has already been tested in other research projects.

A global e-motorcycle

This first prototype, according to its promoters, is the beginning of the worldwide development of electric motorcycles that goes beyond current electric motorcycles, the majority of which are of the scooter type. The creators of this project recognize that in this phase of the development of Spanish electric motorcycles, the support of public and private institutions is needed, in order to allow for the evolution of what will be the first Spanish company to develop high performance electric motorcycles.

The idea is that an electric motorcycle offers great advantages over a conventional motorcycle. "The most important thing, when considering its use in society, is the nearly complete elimination of gasses and the considerable reduction of noise and vibrations", explains Juan Carlos García Prada. Summing up, this is a Spanish research project that attempts to take advantage of advanced technology in order to create a more sustainable future.

The results of the different projects carried out within the university setting have lead to the creation of the UC3M LGN Tech Design Chaired Professorship. "We have created this professorship in order to offer technological support to the students who have developed this project and who have carried out other research projects as well", comments Professor García Prada. A direct consequence of all of this interrelated activity by the university and the productive world is the stimulation of new teaching (through students' final projects, practicums, etc), as well as of R + D within UC3M in the automobile components area, within the context of the potentially huge market, considering both the institutional demand and that of society at large.

LGN Tech Design S.L. describes itself as an engineering company specialized in advanced industrial design, created to promote research in technological security, sustainability and advancement for two-wheeled vehicles, especially electric ones. As part of their ambitious urban electric mobility project, their objective is to develop a. 100% electric motorcycle with dimensions similar to those found in a conventional high-performance 400 cc motorcycle. To this end, the motorcycle should be practical, permitting agile movement around the city and the surrounding areas with no limits on its autonomy (120 km), and it should represent an advance as compared to the electric scooters currently on the market. The project's creators recognize that at this stage in the development of Spanish electric motorcycles they need the support of both public and private institutions in order to compete, in order to allow for the evolution of what will be the first Spanish company to develop high performance electric motorcycles. This is a project whose goal is to protect the environment, make cities more livable and create a more sustainable future.

Read more...

Cheaper, Greener, Alternative Energy Storage At Stevens

Every year, the world consumes 15 Terrawatts of power. Since the amount of annual harvestable solar energy has been estimated at 50 Terrawatts, students at Stevens Institute of Technology are working on a supercapacitor that will allow us to harness more of this renewable energy through biochar electrodes for supercapacitors, resulting in a cleaner, greener planet. Supercapacitors are common today in solar panels and hydrogen fuel cell car batteries, but the material they use to store energy, activated carbon, is unsustainable and expensive. Biochar, on the other hand, represents a cheap, green alternative. The Chemical Engineering Senior Design team of Rachel Kenion, Liana Vaccari, and Katie Van Strander has designed biochar electrodes for supercapacitors, and is looking to eventually bring their solution to market. The group is advised by Dr. Woo Lee, the George Meade Bond Professor of Chemical Engineering and Materials Science.

For their project, the team designed, fabricated, and tested a prototype supercapacitor electrode. The group demonstrated biochar's feasibility as an alternative to activated carbon for electrodes, which can be used in hybrid electric automobile batteries or home energy storage in solar panels.

"While the team's findings are preliminary, the approach taken by us represents a small, but potentially very important step in realizing sustainable energy future over the next few decades," says Dr. Lee.

Biochar is viewed as a green solution to the activated carbon currently used in supercapacitor electrodes. Unlike activated carbon, biochar is the byproduct of the pyrolysis process used to produce biofuels. That is, biochar comes from the burning of organic matter. As the use of biofuels increases, biochar production increases as well. "With our process, we are able to take that biochar and put it to good use in supercapacitors. Our supply comes from goldenrod crop, and through an IP-protected process, most organics, metals, and other impurities are removed. It is a more sustainable method of production than activated carbon," Liana says. Another significant advantage: biochar is nontoxic and will not pollute the soil when it is tossed out. The team estimates that biochar costs almost half as much as activated carbon, and is more sustainable because it reuses the waste from biofuel production, a process with sustainable intentions to begin with.

One of the largest concerns for solar panel production today is the sheer cost of manufacturing supercapacitors. Current photovoltaic arrays rely on supercapacitors to store the energy that is harnessed from the sun. And while the growth rate of supercapacitors is advancing at 20 percent a year, their cost is still very high, in part because they require activated carbon. Biochar, on the other hand, is cheaper and readily available as a byproduct of a process already used in energy production.

"My favorite part of this project was seeing the creation of the prototype," Katie says. "It was cool to be able to hold it in my hand and test it and say that I made this."

Read more...

Novel Man-made Material Could Facilitate Wireless Power

Electrical engineers at Duke University have determined that unique man-made materials should theoretically make it possible to improve the power transfer to small devices, such as laptops or cell phones, or ultimately to larger ones, such as cars or elevators, without wires. This advance is made possible by the recent ability to fabricate exotic composite materials known as metamaterials, which are not so much a single substance, but an entire man-made structure that can be engineered to exhibit properties not readily found in nature. In fact, the metamaterial used in earlier Duke studies, and which would likely be used in future wireless power transmission systems, resembles a miniature set of tan Venetian blinds.

Theoretically, this metamaterial can improve the efficiency of "recharging" devices without wires. As power passes from the transmitting device to the receiving device, most if not all of it scatters and dissipates unless the two devices are extremely close together. However, the metamaterial postulated by the Duke researchers, which would be situated between the energy source and the "recipient" device, greatly refocuses the energy transmitted and permits the energy to traverse the open space between with minimal loss of power.

"We currently have the ability to transmit small amounts of power over short distances, such as in radio frequency identification (RFID) devices," said Yaroslav Urzhumov, assistant research professor in electrical and computer engineering at Duke's Pratt School of Engineering. "However, larger amounts of energy, such as that seen in lasers or microwaves, would burn up anything in its path.

"Based on our calculations, it should be possible to use these novel metamaterials to increase the amount of power transmitted without the negative effects," Urzhumov said.

The results of the Duke research were published online in the journal Physical Review B. Urzhumov works in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Pratt School of Engineering. Smith's team was the first demonstrate that similar metamaterials could act as a cloaking device in 2006.

Just as the metamaterial in the cloaking device appeared to make a volume of space "disappear," in the latest work, the metamaterial would make it seem as if there was no space between the transmitter and the recipient, Urzhumov said. Therefore, he said, the loss of power should be minimal.

Read more...

New Nanoscale İmaging May Lead To New Treatments For Multiple Sclerosis

Laboratory studies by chemical engineers at UC Santa Barbara may lead to new experimental methods for early detection and diagnosis –– and to possible treatments –– for pathological tissues that are precursors to multiple sclerosis and similar diseases. Achieving a new method of nanoscopic imaging, the scientific team studied the myelin sheath, the membrane surrounding nerves that is compromised in patients with multiple sclerosis (MS). The study is published in this week's online edition of the Proceedings of the National Academy of Sciences (PNAS).

"Myelin membranes are a class of biological membranes that are only two molecules thick, less than one millionth of a millimeter," said Jacob Israelachvili, one of the senior authors and professor of chemical engineering and of materials at UCSB. "The membranes wrap around the nerve axons to form the myelin sheath."

He explained that the way different parts of the central nervous system, including the brain, communicate with each other throughout the body is via the transmission of electric impulses, or signals, along the fibrous myelin sheaths. The sheaths act like electric cables or transmission lines.

"Defects in the molecular or structural organization of myelin membranes lead to reduced transmission efficiency," said Israelachvilli. "This results in various sensory and motor disorders or disabilities, and neurological diseases such as multiple sclerosis."

At the microscopic level and the macroscopic level, which is visible to the eye, MS is characterized by the appearance of lesions or vacuoles in the myelin, and eventually results in the complete disintegration of the myelin sheath. This progressive disintegration is called demyelination.

The researchers focused on what happens at the molecular level, commonly referred to as the nanoscopic level. This requires highly sensitive visualization and characterization techniques.

Read more...

Particle Trap Paves Way For Personalized Medicine

Sequencing DNA base pairs – the individual molecules that make up DNA – is key for medical researchers working toward personalized medicine. Being able to isolate, study and sequence these DNA molecules would allow scientists to tailor diagnostic testing, therapies and treatments based on each patient's individual genetic makeup. But being able to isolate individual molecules like DNA base pairs, which are just two nanometers across – or about 1/50,000th the diameter of a human hair – is incredibly expensive and difficult to control. In addition, devising a way to trap DNA molecules in their natural aqueous environment further complicates things. Scientists have spent the past decade struggling to isolate and trap individual DNA molecules in an aqueous solution by trying to thread it through a tiny hole the size of DNA, called a "nanopore," which is exceedingly difficult to make and control.

Now a team led by Yale University researchers has proven that isolating individual charged particles, like DNA molecules, is indeed possible using a method called "Paul trapping," which uses oscillating electric fields to confine the particles to a space only nanometers in size. (The technique is named for Wolfgang Paul, who won the Nobel Prize for the discovery.) Until now, scientists have only been able to use Paul traps for particles in a vacuum, but the Yale team was able to confine a charged test particle – in this case, a polystyrene bead – to an accuracy of just 10 nanometers in aqueous solutions between quadruple microelectrodes that supplied the electric field.

Their device can be contained on a single chip and is simple and inexpensive to manufacture. "The idea would be that doctors could take a tiny drop of blood from patients and be able to run diagnostic tests on it right there in their office, instead of sending it away to a lab where testing can take days and is expensive," said Weihua Guan, a Yale engineering graduate student who led the project.

In addition to diagnostics, this "lab-on-a-chip" would have a wide range of applications, Guan said, such as being able to analyze how individual cells respond to different stimulation. While there are several other techniques for cell-manipulation available now, such as optical tweezers, the Yale team's approach actually works better as the size of the targets gets smaller, contrary to other approaches.

Read more...

U Of T Researchers Crack Full-Spectrum Solar Challenge

In a paper published in Nature Photonics, U of T Engineering researchers report a new solar cell that may pave the way to inexpensive coatings that efficiently convert the sun's rays to electricity. The U of T researchers, led by Professor Ted Sargent, report the first efficient tandem solar cell based on colloidal quantum dots (CQD). "The U of T device is a stack of two light-absorbing layers – one tuned to capture the sun's visible rays, the other engineered to harvest the half of the sun's power that lies in the infrared," said lead author Dr. Xihua Wang.

"We needed a breakthrough in architecting the interface between the visible and infrared junction," said Sargent, a Professor of Electrical and Computer Engineering at the University of Toronto, who is also the Canada Research Chair in Nanotechnology. "The team engineered a cascade – really a waterfall – of nanometers-thick materials to shuttle electrons between the visible and infrared layers."

According to doctoral student Ghada Koleilat, "We needed a new strategy – which we call the Graded Recombination Layer – so that our visible and infrared light-harvesters could be linked together efficiently, without any compromise to either layer."

The team pioneered solar cells made using CQD, nanoscale materials that can readily be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves – wider than normal solar cells – tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency. The work expands the Toronto team's world-leading 5.6 per cent efficient colloidal quantum dot solar cells.

"Building efficient, cost-effective solar cells is a grand global challenge. The University of Toronto is extremely proud of its world-class leadership in the field," said Professor Farid Najm, Chair of The Edward S. Rogers Sr. Department of Electrical & Computer Engineering.

Sargent is hopeful that in five years solar cells using the graded recombination layer published in today's Nature Photonics paper will be integrated into building materials, mobile devices, and automobile parts.

Read more...

Berkeley Scientists Pioneer Nanoscale Nuclear Materials Testing Capability

Nuclear power is a major component of our nation's long-term clean-energy future, but the technology has come under increased scrutiny in the wake of Japan's recent Fukushima disaster. Indeed, many nations have called for checks and "stress tests" to ensure nuclear plants are operating safely. In the United States, about 20 percent of our electricity and almost 70 percent of the electricity from emission-free sources, including renewable technologies and hydroelectric power plants, is supplied by nuclear power. Along with power generation, many of the world's nuclear facilities are used for research, materials testing, or the production of radioisotopes for the medical industry. The service life of structural and functional material components in these facilities is therefore crucial for ensuring reliable operation and safety.

Now scientists at Berkeley Lab, the University of California at Berkeley, and Los Alamos National Laboratory have devised a nanoscale testing technique for irradiated materials that provides macroscale materials-strength properties. This technique could help accelerate the development of new materials for nuclear applications and reduce the amount of material required for testing of facilities already in service.

"Nanoscale mechanical tests always give you higher strengths than the macroscale, bulk values for a material. This is a problem if you actually want use a nanoscale test to tell you something about the bulk-material properties," said Andrew Minor, a faculty scientist in the National Center for Electron Microscopy (NCEM) and an associate professor in the materials science and engineering department at UC Berkeley. "We have shown you can actually get real properties from irradiated specimens as small as 400 nanometers in diameter, which really opens up the field of nuclear materials to take advantage of nanoscale testing."

In this study, Minor and his colleagues conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at NCEM, the team could examine — with nanoscale resolution — the nature of the deformation and how it was localized to just a few atomic planes.

Three-dimensional defects within the copper created by radiation can block the motion of one-dimensional defects in the crystal structure, called dislocations. This interaction causes irradiated materials to become brittle, and alters the amount of force a material can withstand before it eventually breaks. By translating nanoscale strength values into bulk properties, this technique could help reactor designers find suitable materials for engineering components in nuclear plants.

Read more...

Saturday, June 25, 2011

Study: Biodegradable Products May Be Bad For The Environment

Research from North Carolina State University shows that so-called biodegradable products are likely doing more harm than good in landfills, because they are releasing a powerful greenhouse gas as they break down. "Biodegradable materials, such as disposable cups and utensils, are broken down in landfills by microorganisms that then produce methane," says Dr. Morton Barlaz, co-author of a paper describing the research and professor and head of NC State's Department of Civil, Construction, and Environmental Engineering. "Methane can be a valuable energy source when captured, but is a potent greenhouse gas when released into the atmosphere."

And the U.S. Environmental Protection Agency (EPA) estimates that only about 35 percent of municipal solid waste goes to landfills that capture methane for energy use. EPA estimates that another 34 percent of landfills capture methane and burn it off on-site, while 31 percent allow the methane to escape.

"In other words," Barlaz says, "biodegradable products are not necessarily more environmentally friendly when disposed in landfills."

This problem may be exacerbated by the rate at which these man-made biodegradable materials break down. Federal Trade Commission (FTC) guidelines call for products marked as "biodegradable" to decompose within "a reasonably short period of time" after disposal. But such rapid degradation may actually be environmentally harmful, because federal regulations do not require landfills that collect methane to install gas collection systems for at least two years after the waste is buried. If materials break down and release methane quickly, much of that methane will likely be emitted before the collection technology is installed. This means less potential fuel for energy use, and more greenhouse gas emissions.

As a result, the researchers find that a slower rate of biodegradation is actually more environmentally friendly, because the bulk of the methane production will occur after the methane collection system is in place. Some specific biodegradable products such as bags that hold yard waste and are always sent to composting or anaerobic digestion facilities were not included in the study.

"If we want to maximize the environmental benefit of biodegradable products in landfills," Barlaz says, "we need to both expand methane collection at landfills and design these products to degrade more slowly – in contrast to FTC guidance."

Read more...

Nanoscale Waveguide For Future Photonics

The creation of a new quasiparticle called the "hybrid plasmon polariton" may throw open the doors to integrated photonic circuits and optical computing for the 21st century. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated the first true nanoscale waveguides for next generation on-chip optical communication systems. "We have directly demonstrated the nanoscale waveguiding of light at visible and near infrared frequencies in a metal-insulator-semiconductor device featuring low loss and broadband operation," says Xiang Zhang, the leader of this research. "The novel mode design of our nanoscale waveguide holds great potential for nanoscale photonic applications, such as intra-chip optical communication, signal modulation, nanoscale lasers and bio-medical sensing."

Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of the University of California at Berkeley's Nano-scale Science and Engineering Center (SINAM), is the corresponding author of a paper published by Nature Communications that describes this work titled "Experimental Demonstration of Low-Loss Optical Waveguiding at Deep Sub-wavelength Scales." Co-authoring the paper with Zhang were Volker Sorger, Ziliang Ye, Rupert Oulton, Yuan Wang, Guy Bartal and Xiaobo Yin.

In this paper, Zhang and his co-authors describe the use of the hybrid plasmon polariton, a quasi-particle they conceptualized and created, in a nanoscale waveguide system that is capable of shepherding light waves along a metal-dielectric nanostructure interface over sufficient distances for the routing of optical communication signals in photonic devices. The key is the insertion of a thin low-dielectric layer between the metal and a semiconductor strip.

"We reveal mode sizes down to 50-by-60 square nanometers using Near-field scanning optical microscopy (NSOM) at optical wavelengths," says Volker Sorger a graduate student in Zhang's research group and one of the two lead authors on the Nature Communications paper. "The propagation lengths were 10 times the vacuum wavelength of visible light and 20 times that of near infrared."

The high-technology world is eagerly anticipating the replacement of today's electronic circuits in microprocessors and other devices with circuits based on the transmission of light and other forms of electromagnetic waves. Photonic technology, or "photonics," promises to be superfast and ultrasensitive in comparison to electronic technology.

"To meet the ever-growing demand for higher data bandwidth and lower power consumption, we need to reduce the energy required to create, transmit and detect each bit of information," says Sorger. "This requires reducing physical photonic component sizes down beyond the diffraction limit of light while still providing integrated functionality."

Until recently, the size and performance of photonic devices was constrained by the interference that arises between closely spaced light waves. This diffraction limit results in weak photonic-electronic interactions that can only be avoided through the use of devices much larger in size than today's electronic circuits. A breakthrough came with the discovery that it is possible to couple photons with electrons by squeezing light waves through the interface between a metal/dielectric nanostructure whose dimensions are smaller than half the wavelengths of the incident photons in free space.

Read more...

Study Finds Fire Stations Contaminated With Mrsa

MRSA transmission may be occurring in fire stations, according to a study published in the June issue of the American Journal of Infection Control, the official publication of APIC – the Association for Professionals in Infection Control and Epidemiology. The purpose of the study, conducted by investigators from the University of Washington School of Public Health, was to determine potential areas within the fire stations that were contaminated with methicillin-resistant Staphylococcus aureus (MRSA) and characterize the isolates to determine if they were related to hospital (HA-MRSA) and/or community (CA-MRSA) strains.

"This is the first study to molecularly characterize MRSA isolates from fire station environmental surfaces and the first study to sample both fire station surfaces and personnel as well as one of the first studies to characterize non-health care environmental MRSA," commented lead investigator Marilyn C. Roberts, PhD, University of Washington School of Public Health.

Researchers assessed nine different areas in two fire stations that included 1) medic trucks; 2) fire trucks and fire engines; 3) outer fire gear; 4) garages; 5) kitchens; 6) bathrooms; 7) bedrooms; 8) gyms; and 9) other areas. After the first sampling, an educational program was conducted at each station, and hand sanitizers were installed. A second set of samples was collected 7-9 months later at the same two stations. During the second sampling, nasal samples were obtained from 40 healthy fire personnel from 13 stations to evaluate MRSA carriage.

A total of 1,064 samples were collected, 600 in the first sampling and 464 in the second. Each sample was analyzed for MRSA, staphylococci that were not S. aureus but were resistant to methicillin (labeled methicillin-resistant coagulase negative Staphylococcus spp. [MRCoNS]), and staphylococci that were not methicillin resistant (labeled as coagulase negative Staphylococcus spp. [CoNS]).

At the first sampling, 26 (4.3%) of the 600 surface samples were MRSA positive, with MRSA positive samples found in all nine areas sampled. The most common area for MRSA contamination was the medic trucks with 13 (50%), the kitchens with 3 (11.5%) and other areas such as computer keyboards and computer desks with 2 (7.7%).

At the second sampling, 18 (3.9%) of the 464 surface samples were MRSA positive, with MRSA positive samples again found in all nine areas sampled. The kitchen and outer gear both had 4 (22%) MRSA positive samples, while the medic truck had 3 (16.6%), other areas had 1-2 MRSA positive samples each. Two samples contained a strain of MRSA (MRSA SCCmec type II), which is commonly found in hospitals, and were isolated from the fire truck/engine and garage areas.

Thirty percent of the nasal cultures were positive for MRSA (9 samples) or S. aureus (3 samples). The majority (58%) of the nasal MRSA and S. aureus were genetically related to environmental surface isolates suggesting transmission between personnel and the environmental surfaces may be occurring.

Read more...

Researchers Cut Machinery Fuel Consumption By Half

Researchers at Aalto University in Finland have found a way to cut the amount of fuel consumed by non-road mobile machinery by half. This new technology captures energy, which up to now has been lost by the machinery when working, and uses it instead of fuel. The fuel consumption of construction and mining machines, agricultural machines and material handling machines is reduced significantly. − These heavy duty machines are operated for long periods of time, so by the end of the day emissions and fuel consumption have added up. Being able to target them is a significant improvement, says Professor Jussi Suomela, who is in charge of the project at Aalto University's HybLab research network in Finland.

The researchers have added an electric power transmission system into the machines. The machines then become hybrids with both combustion and electric engines. Similar technology has already proven successful in personal cars; however, hybrid cars only capture energy from wheels during deceleration, whereas work machines create most of the extra energy during work tasks. This energy has not been captured until now.

The researchers at the Finnish Aalto University are now analyzing the work cycles of different types of machinery in order to find out which work tasks allow energy to be captured. Deceleration and lowering a load are typical examples. This technology enables short-term energy storage, making it possible to store energy for later use during a peak in power demand. The electric transmission generates other side benefits such as better controllability, operator comfort, efficiency and more freedom in the machine structure.

The goal is to reduce fuel consumption and carbon dioxide emissions. Another benefit of hybridization is that it leads to lower operation costs as well. With electric power transmission, the machines may even be connected to normal wall sockets.

− Electricity from the power grid is very cost-efficient and creates no local emissions. If the machine can be plugged in, that is usually the best option. The future is likely to make fuel cells available, too, says Suomela. And the benefits do not stop here: the machines are even able to release stored electrical energy back into the grid.

Read more...

Space Research Gives Birth To Neultrasound Halth Care İn Orbit On Earth

The remoteness and resource limitations of spaceflight pose a serious challenge to astronaut health care. One solution is ultrasound. Scientists with the National Space Biomedical Research Institute (NSBRI) have developed tools that expand the use of ultrasound during spaceflight and on Earth, especially in rural and underserved locations. These tools include techniques that streamline training and help remote experts guide non-physician astronauts to perform ultrasound exams. Ultrasound can be used to assess numerous conditions – fractured bones, collapsed lungs, kidney stones, organ damage and other ailments – in space and on Earth. With an NSBRI grant, they also created a catalog, or atlas, of "space-normal" imagery of the human body, setting the stage for astronauts to provide care without consulting a physician on Earth. This atlas was handed over to NASA earlier this year.

Dr. Scott A. Dulchavsky, the Roy D. McClure Chairman of Surgery and Surgeon-in-Chief at the Henry Ford Hospital in Detroit, is the principal investigator of these projects and is a member of the NSBRI Smart Medical Systems and Technology Team. "The ultrasound imagery techniques came from space program constraints of not having a trained radiologist on orbit or having a CAT scan or an MRI available, forcing us to use ultrasound for things in which we would not normally use it," he said. "Also, time limitations forced us to put some tight brackets around what is absolutely required for training to be able to obtain a high-quality ultrasound image and to make some sense out of the image."

Dulchavsky and colleagues from NSBRI, NASA, Henry Ford and Wyle Integrated Science and Engineering Group began their first ultrasound experiment -- Advanced Diagnostic Ultrasound in Microgravity (ADUM) -- by developing exam techniques for use on the International Space Station (ISS). The goal was for ISS crewmembers to collect high-quality ultrasound images to send to the Mission Control Center for analysis. The ADUM research was split into two projects: NSBRI funded the ground portion of the research, while NASA supported the flight portion.

The researchers conducted 80 hours of ultrasound examinations on the ISS and then sifted through approximately 20,000 images and many hours of video collected during ISS Expeditions 8 through 12 to create the "space-normal" atlas. The researchers developed the intuitive ultrasound guide to give astronauts broader use of ultrasound in additional organ systems and medical problems that were not part of the ISS experiment. Dulchavsky said, "ADUM initially utilized telemedicine and tele-ultrasound operations in which the astronauts were interacting with researchers and flight controllers on the ground during the examinations. The ultrasound intuitive guide allows astronauts to conduct exams when quick communication with an expert is not available due to distance from Earth or other reasons."

One of the first to be trained and to conduct an ultrasound exam in space was former NASA Astronaut and ISS Expedition 10 Commander Dr. Leroy Chiao. "We demonstrated on the International Space Station that even non-physicians can produce diagnostic-quality ultrasound images using remote guidance," said Chiao who is chairman of the NSBRI User Panel and a member of Baylor College of Medicine's Center for Space Medicine. "These ultrasound exam techniques and atlas will be increasingly important as we venture farther and longer into space. Telemedicine using ultrasound will be an invaluable medical diagnostic tool."

Read more...

Ghrelin Likely İnvolved İn Why We Choose 'Comfort Foods' When Stressed

We are one step closer to deciphering why some stressed people indulge in chocolate, mashed potatoes, ice cream and other high-calorie, high-fat comfort foods. UT Southwestern Medical Center-led findings, in a mouse study, suggest that ghrelin – the so-called "hunger hormone" – is involved in triggering this reaction to high stress situations.

"This helps explain certain complex eating behaviors and may be one of the mechanisms by which obesity develops in people exposed to psychosocial stress," said Dr. Jeffrey Zigman, assistant professor of internal medicine and psychiatry and senior author of a study appearing online today and in a future print edition of the Journal of Clinical Investigation. "We think these findings are not just abstract and relevant only to mice, but likely are also relevant to humans."

Scientists know that fasting causes ghrelin to be released from the gastrointestinal tract, and that the hormone then plays a role in sending hunger signals to the brain. Dr. Zigman's laboratory has previously shown that chronic stress also causes elevated ghrelin levels, and that behaviors generally associated with depression and anxiety are minimized when ghrelin levels rise. In mice, these stress-induced rises in ghrelin lead to overeating and increased body weight, suggesting a mechanism for the increased prevalence of weight-related issues observed in humans with chronic stress and depression.

For this investigation, the researchers developed a mouse model to determine which hormones and what parts of the brain may play a role in controlling more complex eating behaviors that occur upon stress, particularly those that lead to the indulgence of comfort foods.

They subjected mice to a standard laboratory technique that induces social stress by exposure to more dominant "bully" mice. Such animals have been shown to be good models for studying depression and the effects of chronic stress and depression in humans.

Wild-type mice subjected to the stress gravitated toward a chamber where they had been trained to find pleasurable, fatty food – the mouse equivalent of "comfort food." However, genetically-engineered mice, which were not able to respond to stress-induced increases in ghrelin, showed no preference toward the fatty food-paired chamber, and when exposed to the fatty food, did not eat as much as the wild-type animals.

"Our findings show that ghrelin signaling is crucial to this particular behavior and that the increase in ghrelin which occurs as a result of chronic stress is probably behind these food-reward behaviors," Dr. Zigman said.

Read more...

Newspaper Archives Help To Understand Coastal Flooding Along The South Of England

A unique study using over 70 years of information from local newspapers has helped to examine the incidence and location of coastal floods in the Solent region of southern England. Coastal flood events in the Solent have been common over the last 70 years and are often associated with the highest sea levels. A significant number of events with severe impacts have been identified, with repeated damage and disruption at certain locations.

Using newly digitised sea-level data for the ports of Southampton (1935�) and Portsmouth (1961�) on the south coast of the UK, the University of Southampton study investigates the relationship between the 100 highest sea-level events recorded at the two cities and the incidence of coastal floods in the adjoining Solent region.

The main sources of flood data came from the daily newspapers The Southern Daily Echo, based in Southampton, and The News, based in Portsmouth, supported by a range of local publications and records.

The study found a strong relationship between the highest measured sea levels and the incidence of coastal floods, and highlights the most vulnerable areas to coastal flooding, which include parts of Portsmouth, Southampton, Hayling Island, Fareham and Cowes. The most severe flood in the dataset resulted from the storm surge events of 13󈝽 December 1989 when eight consecutive extreme high waters occurred.

The study, which is published online in the Natural Hazards journal, suggests that while extreme sea-level events are becoming more common, the occurrence of flood events is not increasing.

One of the study's authors Robert Nicholls, Professor of Coastal Engineering at the University of Southampton, explains why this might be the case: "While the occurrence of extreme sea levels has increased since the 1970s, the occurrence of damaging floods has remained roughly constant over time, and fewer areas have been affected by flooding. This is mainly attributed to new and improved coastal defences at key flooding 'hotspots', such as Eastoke and Hayling, but the general decline in storm intensity since the 1980s may also be important.

"However, the significant impacts of the November 2005 flood at Hayling, despite millions of pounds of investment in defences, and the more recent flooding on the Isle of Wight in March 2008, illustrate the continuing coastal flood problems in this region. This demonstrates an ongoing need for preparedness for coastal flooding, together with improving flood defence and management in the region."

Read more...

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP