Wednesday, January 12, 2011

BUFFALO, N.Y. -- Unprecedented. That's how earthquake engineers describe today's seismic test at the University at Buffalo.

Most simulated earthquake tests feature neither full-scale structures nor ground motions in three directions, but the seismic test of a wood-frame townhouse conducted today in UB's Structural Engineering and Earthquake Simulation Laboratory featured both.

For 15 seconds, the two-story, wood-frame townhouse similar to those found in southern California and constructed on the laboratory's twin shake tables was exposed to a magnitude 6.7 earthquake like the Northridge quake that struck the Los Angeles area in 1994. The ground motions in three directions created by the shake tables were similar to those recorded less than four miles from the Northridge earthquake's epicenter.

The three-bedroom, 1,800-square-foot townhouse shook violently during the test, but did not collapse. Remote cameras located inside various rooms showed contents falling off of desks and shelves. Large cracks were created in the structure on each corner of the frame above the garage door.

The townhouse is the largest wood structure in the world ever to undergo seismic testing.

The townhouse was completely furnished for the test, down to a car in the garage, two water heaters (one anchored, according to earthquake protection measures and one not anchored), and dishes on the dining room table.

An upstairs bedroom was decorated as a UB dorm room, by the university's student chapter of the American Society for Civil Engineers. On the wall hang T-shirts from the project's participating universities: UB, Colorado State, Cornell, Rensselaer Polytechnic Institute and Texas A&M.

"The goal of furnishing the house is to make the test as realistic as possible," Andre Filiatrault, professor of civil, structural and environmental engineering in the UB School of Engineering and Applied Sciences and lead investigator on the UB tests, said in an interview prior to the testing. "The test will demonstrate in a dramatic way how much damage can occur during an earthquake if homeowners don't take the proper precautions."

Today's test ended the first year of a four-year, $1.24 million National Science Foundation-funded project called NEESWood, designed to provide engineers with data on how to improve performance of wood-frame structures during earthquakes.

Led by Colorado State University, the NEESWood research is based on the premise that if more is known about how wood structures react to earthquakes, then larger and taller wood structures can be built in seismic regions worldwide, providing economic, engineering and societal benefits.

The NEESWood project will culminate with validation of new seismic design processes in 2009, when a six-story wood-frame structure is tested on the world's largest shake table in Miki City, Japan.

0 comments:

  © Blogger templates Psi by Ourblogtemplates.com 2008

Back to TOP