Scientists Design New Anti-flu virus Proteins Using Computational Methods
A research article May 12 in Science demonstrates the use of computational methods to design new antiviral proteins not found in nature, but capable of targeting specific surfaces of flu virus molecules. One goal of such protein design would be to block molecular mechanisms involved in cell invasion and virus reproduction.
Computationally designed, surface targeting, antiviral proteins might also have diagnostic and therapeutic potential in identifying and fighting viral infections.
The lead authors of the study are Sarel J. Fleishman and Timothy Whitehead of the University of Washington (UW) Department of Biochemistry, and Damian C. Ekiert from the Department of Molecular Biology and the Skaggs Institute for Chemical Biology at The Scripps Research Institute. The senior authors are Ian Wilson from Scripps and David Baker from the UW and the Howard Hughes Medical Institute.
The researchers note that additional studies are required to see if such designed proteins can help in diagnosing, preventing or treating viral illness. What the study does suggest is the feasibility of using computer design to create new proteins with antiviral properties.
"Influenza presents a serious public health challenge," the researchers noted, "and new therapies are needed to combat viruses that are resistant to existing anti-viral medications or that escape the body's defense systems."
They focused their attention on the section of the flu virus known as the hemagglutinin stem region. They concentrated on trying to disable this part because of its function in invading the cells of the human respiratory tract.
Their approach was somewhat similar to engineering a small space shuttle with the right configuration and construction, as well as recognizance and interlocking mechanisms, to dock with a troublesome space station and upset its mission. Only these scientists attempted their engineering feat at an atomic and molecular level.
Central to their approach is the ability of biological molecules to recognize certain other molecules or their working parts, and to have an affinity for binding to them at pre-determined locations. This recognition has both physical and chemical bases. Protein-protein interactions underlie many biological activities, including those that disarm and deactivate viruses.
In their report, the researchers described their general computational methods for designing new, tiny protein molecules that could bind to a certain spot on large protein molecules. They took apart some protein structures and watched how these disembodied sections interacted with a target surface. They analyzed particular high-affinity interactions, and used this information to further refine computer-generated designs for interfaces.
0 comments:
Post a Comment